Nothing
bw <- c("black", "white")
test_that("Edgy col_bin scenarios", {
# Do these cases make sense?
expect_equal(col_bin(bw, NULL)(1), "#777777")
expect_equal(col_bin(bw, 1)(1), "#FFFFFF")
})
test_that("Outside of domain returns na.color", {
suppressWarnings({
expect_identical("#808080", col_factor(bw, letters)("foo"))
expect_identical("#808080", col_quantile(bw, 0:1)(-1))
expect_identical("#808080", col_quantile(bw, 0:1)(2))
expect_identical("#808080", col_numeric(bw, c(0, 1))(-1))
expect_identical("#808080", col_numeric(bw, c(0, 1))(2))
expect_true(is.na(col_factor(bw, letters, na.color = NA)("foo")))
expect_true(is.na(col_quantile(bw, 0:1, na.color = NA)(-1)))
expect_true(is.na(col_quantile(bw, 0:1, na.color = NA)(2)))
expect_true(is.na(col_numeric(bw, c(0, 1), na.color = NA)(-1)))
expect_true(is.na(col_numeric(bw, c(0, 1), na.color = NA)(2)))
})
expect_warning(col_factor(bw, letters, na.color = NA)("foo"))
expect_warning(col_quantile(bw, 0:1, na.color = NA)(-1))
expect_warning(col_quantile(bw, 0:1, na.color = NA)(2))
expect_warning(col_numeric(bw, c(0, 1), na.color = NA)(-1))
expect_warning(col_numeric(bw, c(0, 1), na.color = NA)(2))
})
test_that("Basic color accuracy", {
expect_identical(c("#000000", "#808080", "#FFFFFF"), col_numeric(colorRamp(bw), NULL)(c(0, 0.5, 1)))
expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, NULL)(c(1, 2)))
expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, c(1, 2))(c(1, 2)))
expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, c(1, 2), 2)(c(1, 2)))
expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, NULL, bins = c(1, 1.5, 2))(c(1, 2)))
expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, c(1, 2), bins = c(1, 1.5, 2))(c(1, 2)))
expect_identical(c("#000000", "#777777", "#FFFFFF"), col_numeric(bw, NULL)(1:3))
expect_identical(c("#000000", "#777777", "#FFFFFF"), col_numeric(bw, c(1:3))(1:3))
expect_identical(rev(c("#000000", "#777777", "#FFFFFF")), col_numeric(rev(bw), c(1:3))(1:3))
# domain != unique(x)
expect_identical(c("#000000", "#0E0E0E", "#181818"), col_factor(bw, LETTERS)(LETTERS[1:3]))
# domain == unique(x)
expect_identical(c("#000000", "#777777", "#FFFFFF"), col_factor(bw, LETTERS[1:3])(LETTERS[1:3]))
# no domain
expect_identical(c("#000000", "#777777", "#FFFFFF"), col_factor(bw, NULL)(LETTERS[1:3]))
# Non-factor domains are sorted unless instructed otherwise
expect_identical(c("#000000", "#777777", "#FFFFFF"), col_factor(bw, rev(LETTERS[1:3]))(LETTERS[1:3]))
expect_identical(rev(c("#000000", "#777777", "#FFFFFF")), col_factor(bw, rev(LETTERS[1:3]), ordered = TRUE)(LETTERS[1:3]))
})
test_that("col_numeric respects alpha", {
expect_equal(
col_numeric(c("#FF000000", "#FF0000FF"), c(0, 1), alpha = TRUE)(0.5),
"#FF000080"
)
})
test_that("CIELab overflow", {
expect_identical(c("#FFFFFF", "#CFB1FF", "#9265FF", "#0000FF"), colour_ramp(c("white", "blue"))(0:3 / 3))
})
test_that("factors match by name, not position", {
full <- factor(letters[1:5])
pal <- col_factor("magma", na.color = NA, levels = full)
partial <- full[2:4]
expect_identical(pal(partial), pal(droplevels(partial)))
# Sending in values outside of the color scale should result in a warning and na.color
expect_warning(col <- pal(letters[10:20]))
expect_true(all(is.na(col)))
})
test_that("qualitative palettes don't interpolate", {
pal <- col_factor("Accent", na.color = NA, levels = letters[1:5])
allColors <- RColorBrewer::brewer.pal(
n = RColorBrewer::brewer.pal.info["Accent", "maxcolors"],
name = "Accent"
)
# If we're not interpolating, then the colors for each level should match
# exactly with the color in the corresponding position in the palette.
expect_identical(pal(letters[1:5]), allColors[1:5])
# Same behavior when domain is provided initially
expect_identical(
col_factor("Accent", domain = rep(letters[1:5], 2))(letters[1:5]),
allColors[1:5]
)
# Same behavior when domain is provided initially, and is a factor
expect_identical(
col_factor("Accent", domain = factor(rep(letters[5:1], 2)))(letters[1:5]),
allColors[1:5]
)
# Same behavior when domain is provided initially, and is not a factor
expect_identical(
col_factor("Accent", domain = rep(letters[5:1], 2), ordered = TRUE)(letters[5:1]),
allColors[1:5]
)
# Same behavior when no domain or level is provided initially
expect_identical(
col_factor("Accent", NULL)(letters[1:5]),
allColors[1:5]
)
# Values outside of the originally provided levels should be NA with warning
expect_warning(pal(letters[6]))
expect_true(suppressWarnings(is.na(pal(letters[6]))))
})
test_that("OK, qualitative palettes sometimes interpolate", {
pal <- col_factor("Accent", na.color = NA, levels = letters[1:20])
allColors <- RColorBrewer::brewer.pal(
n = RColorBrewer::brewer.pal.info["Accent", "maxcolors"],
name = "Accent"
)
expect_warning(result <- pal(letters[1:20]))
# The first and last levels are the first and last palette colors
expect_true(all(result[c(1, 20)] %in% allColors))
# All the rest are interpolated though
expect_true(!any(result[-c(1, 20)] %in% allColors))
})
verifyReversal <- function(colorFunc, values, ..., filter = identity) {
f1 <- filter(colorFunc("Blues", domain = values, ...)(values))
f2 <- filter(colorFunc("Blues", domain = NULL, ...)(values))
f3 <- filter(colorFunc("Blues", domain = values, reverse = FALSE, ...)(values))
f4 <- filter(colorFunc("Blues", domain = NULL, reverse = FALSE, ...)(values))
r1 <- filter(colorFunc("Blues", domain = values, reverse = TRUE, ...)(values))
r2 <- filter(colorFunc("Blues", domain = NULL, reverse = TRUE, ...)(values))
expect_identical(f1, f2)
expect_identical(f1, f3)
expect_identical(f1, f4)
expect_identical(r1, r2)
expect_identical(f1, rev(r1))
}
test_that("col_numeric can be reversed", {
verifyReversal(col_numeric, 1:10)
})
test_that("col_bin can be reversed", {
# col_bin needs to filter because with 10 values and 7 bins, there is some
# repetition that occurs in the results. Hard to explain but easy to see:
# scales::show_col(col_bin("Blues", NULL)(1:8))
# scales::show_col(col_bin("Blues", NULL, reverse = TRUE)(1:8))
verifyReversal(col_bin, 1:10, filter = unique)
})
test_that("col_quantile can be reversed", {
verifyReversal(col_quantile, 1:10, n = 7)
})
test_that("col_factor can be reversed", {
# With interpolation
verifyReversal(col_factor, letters[1:8])
# Without interpolation
accent <- suppressWarnings(RColorBrewer::brewer.pal(Inf, "Accent"))
result1 <- col_factor("Accent", NULL)(letters[1:5])
expect_identical(result1, head(accent, 5))
# Reversing a qualitative palette means we should pull the same colors, but
# apply them in reverse order
result2 <- col_factor("Accent", NULL, reverse = TRUE)(letters[1:5])
expect_identical(result2, rev(head(accent, 5)))
})
test_that("Palettes with ncolor < 3 work properly", {
test_palette <- function(palette) {
colors <- col_factor(palette, letters[1:2])(letters[1:2])
# brewer.pal returns minimum 3 colors, and warns if you request less than 3.
expected_colors <- suppressWarnings(RColorBrewer::brewer.pal(2, palette))[1:2]
# The expected behavior is that the first two colors in the palette are returned.
# This is different than the behavior in Leaflet color* functions; in those
# functions, when 2 colors are needed from an RColorBrewer palette, the first and
# third colors are used. Using the first and third is arguably a better choice
# for sequential and diverging palettes, and very arguably worse for qualitative.
# The scales' col_* functions use the first 2 colors for consistency with
# scales::brewer_pal.
expect_identical(colors, expected_colors)
colors <- col_bin(palette, 1:2, bins = 2)(1:2)
expect_identical(colors, expected_colors)
}
# Qualitative palette
test_palette("Accent")
# Sequential palette
test_palette("Blues")
# Diverging palette
test_palette("Spectral")
})
test_that("col_quantile handles skewed data", {
expect_snapshot({
x <- c(1:5, rep(10, 10))
col <- col_quantile("RdYlBu", domain = x, n = 7)(x)
col <- col_quantile("RdYlBu", domain = NULL, n = 7)(x)
})
})
test_that("Arguments to `cut` are respected", {
colors1 <- col_bin("Greens", 1:3, 1:3)(1:3)
# Intervals are [1,2) and [2,3], so 2 and 3 are the same
expect_identical(colors1, c("#E5F5E0", "#A1D99B", "#A1D99B"))
colors2 <- col_bin("Blues", 1:3, 1:3, right = TRUE)(1:3)
# Intervals are [1,2] and (2,3], so 1 and 2 are the same
expect_identical(colors2, c("#DEEBF7", "#DEEBF7", "#9ECAE1"))
# Shows that you can use cut + col_factor to achieve finer grained
# control than with col_bin
pal <- col_factor("Reds", domain = NULL, na.color = NA)
colorsTT <- pal(cut(1:3, 1:3, include.lowest = TRUE, right = TRUE))
expect_identical(colorsTT, c("#FEE0D2", "#FEE0D2", "#FC9272"))
colorsTF <- pal(cut(1:3, 1:3, include.lowest = TRUE, right = FALSE))
expect_identical(colorsTF, c("#FEE0D2", "#FC9272", "#FC9272"))
colorsFT <- pal(cut(1:3, 1:3, include.lowest = FALSE, right = TRUE))
expect_identical(colorsFT, c(NA, "#FEE0D2", "#FC9272"))
colorsFF <- pal(cut(1:3, 1:3, include.lowest = FALSE, right = FALSE))
expect_identical(colorsFF, c("#FEE0D2", "#FC9272", NA))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.