Nothing
#' Analysis: Logistic regression
#'
#' Logistic models with three (LL.3) or four (LL.4) continuous data parameters. This model was extracted from the drc package and adapted for temperature analysis in seed germination.
#' @param trat Numerical or complex vector with treatments
#' @param resp Numerical vector containing the response of the experiment.
#' @param npar Number of model parameters
#' @param error Error bar (It can be SE - \emph{default}, SD or FALSE)
#' @param ylab Variable response name (Accepts the \emph{expression}() function)
#' @param xlab Treatments name (Accepts the \emph{expression}() function)
#' @param theme ggplot2 theme (\emph{default} is theme_bw())
#' @param legend.position Legend position (\emph{default} is c(0.3,0.8))
#' @param r2 Coefficient of determination of the mean or all values (\emph{default} is all)
#' @param cardinal Defines the value of y considered extreme (\emph{default} considers 0 germination)
#' @param scale Sets x scale (\emph{default} is none, can be "log")
#' @param width.bar Bar width
#' @param textsize Font size
#' @param pointsize shape size
#' @param linesize line size
#' @param pointshape format point (\emph{default} is 21)
#' @param font.family Font family (\emph{default} is sans)
#' @return
#' \describe{
#' \item{\code{Coefficients}}{Coefficients and their p values}
#' \item{\code{Optimum temperature}}{Optimum temperature (equivalent to the maximum point)}
#' \item{\code{Optimum temperature response}}{Response at the optimal temperature (equivalent to the maximum point)}
#' \item{\code{Minimal temperature}}{Temperature that has the lowest response}
#' \item{\code{Minimal temperature response}}{Lowest predicted response}
#' \item{\code{Predicted maximum basal value}}{Lower basal limit temperature based on the value set by the user (default is 0)}
#' \item{\code{Predicted minimum basal value}}{Upper basal limit temperature based on the value set by the user (default is 0)}
#' \item{\code{AIC}}{Akaike information criterion}
#' \item{\code{BIC}}{Bayesian Inference Criterion}
#' \item{\code{r-squared}}{Determination coefficient}
#' \item{\code{RMSE}}{Root mean square error}
#' \item{\code{grafico}}{Graph in ggplot2 with equation}
#' }
#' @details The three-parameter log-logistic function with lower limit 0 is
#' \deqn{f(x) = 0 + \frac{d}{1+\exp(b(\log(x)-\log(e)))}}
#' The four-parameter log-logistic function is given by the expression
#' \deqn{f(x) = c + \frac{d-c}{1+\exp(b(\log(x)-\log(e)))}}
#' The function is symmetric about the inflection point (e).
#' @note if the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
#' @author Model imported from the drc package (Ritz et al., 2016)
#' @author Gabriel Danilo Shimizu
#' @author Leandro Simoes Azeredo Goncalves
#' @references Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).
#' @references Ritz, C.; Strebig, J.C.; Ritz, M.C. Package ‘drc’. Creative Commons: Mountain View, CA, USA, 2016.
#' @export
#'
#' @examples
#' library(seedreg)
#' data("aristolochia")
#' attach(aristolochia)
#'
#' #================================
#' # Germination
#' #================================
#' LL_model(trat,germ)
#'
#' #================================
#' # Germination speed
#' #================================
#' LL_model(trat, vel, ylab=expression("v"~(dias^-1)))
LL_model=function(trat,
resp,
npar="LL.3",
error="SE",
ylab="Germination (%)",
xlab=expression("Temperature ("^"o"*"C)"),
theme=theme_classic(),
legend.position="top",
cardinal=0,
r2="all",
width.bar=NA,
scale="none",
textsize=12,
pointsize=4.5,
linesize=0.8,
pointshape=21,
font.family="sans"){
requireNamespace("drc")
requireNamespace("crayon")
requireNamespace("ggplot2")
ymean=tapply(resp,trat,mean)
if(is.na(width.bar)==TRUE){width.bar=0.01*mean(trat)}
if(error=="SE"){ysd=tapply(resp,trat,sd)/sqrt(tapply(resp,trat,length))}
if(error=="SD"){ysd=tapply(resp,trat,sd)}
if(error=="FALSE"){ysd=0}
desvio=ysd
xmean=tapply(trat,trat,mean)
if(npar=="LL.3"){mod=drm(resp~trat,fct=LL.3())
coef=summary(mod)
b=coef$coefficients[,1][1]
d=coef$coefficients[,1][2]
e=coef$coefficients[,1][3]
if(r2=="all"){r2=cor(resp, fitted(mod))^2}
if(r2=="mean"){r2=cor(ymean, predict(mod,newdata=data.frame(trat=unique(trat))))^2}
r2=floor(r2*100)/100
equation=sprintf("~~~y==frac(%0.3e, 1+e^(%0.3e*(log(x)-log(%0.3e)))) ~~~~~ italic(R^2) == %0.2f",
d,b,e,r2)
xp=seq(min(trat),max(trat),length.out = 1000)
preditos=data.frame(x=xp,
y=predict(mod,newdata = data.frame(trat=xp)))
}
if(npar=="LL.4"){mod=drm(resp~trat,fct=LL.4())
coef=summary(mod)
b=coef$coefficients[,1][1]
c=coef$coefficients[,1][2]
d=coef$coefficients[,1][3]
e=coef$coefficients[,1][4]
if(r2=="all"){r2=cor(resp, fitted(mod))^2}
if(r2=="mean"){r2=cor(ymean, predict(mod,newdata=data.frame(trat=unique(trat))))^2}
r2=floor(r2*100)/100
equation=sprintf("~~~y == %0.3e + frac(%0.3e %s %0.3e, 1+e^(%0.3e*(log(x)-log(%0.3e)))) ~~~~~ italic(R^2) == %0.2f",
c,
d,
ifelse(c >= 0, "+", "-"),
abs(c),
b,
e,
r2)
xp=seq(min(trat),max(trat),length.out = 1000)
preditos=data.frame(x=xp,
y=predict(mod,newdata = data.frame(trat=xp)))}
predesp=predict(mod)
predobs=resp
rmse=sqrt(mean((predesp-predobs)^2))
x=preditos$x
y=preditos$y
s=equation
data=data.frame(xmean,ymean)
data1=data.frame(trat=xmean,resp=ymean)
graph=ggplot(data,aes(x=xmean,y=ymean))
if(error!="FALSE"){graph=graph+geom_errorbar(aes(ymin=ymean-ysd,ymax=ymean+ysd),
width=width.bar,size=linesize)}
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")+
theme+
geom_line(data=preditos,aes(x=x,
y=y,color="black"),size=linesize)+
scale_color_manual(name="",values=1,label=parse(text = equation))+
theme(axis.text = element_text(size=textsize,color="black",family = font.family),
axis.title = element_text(family = font.family),
legend.position = legend.position,
legend.text = element_text(size=textsize,family = font.family),
legend.direction = "vertical",
legend.text.align = 0,
legend.justification = 0)+
ylab(ylab)+xlab(xlab)
if(scale=="log"){graph=graph+scale_x_log10()}
temp1=seq(min(trat),max(trat),length.out=10000)
result=predict(mod,newdata = data.frame(temp=temp1),type="response")
maximo=temp1[which.max(result)]
respmax=result[which.max(result)]
mini=temp1[which.min(result)]
respmin=result[which.min(result)]
result1=round(result,0)
fa=temp1[result1<=cardinal & temp1>maximo]
if(length(fa)>0){maxl=max(temp1[result1<=cardinal & temp1>maximo])}else{maxl=NA}
fb=temp1[result1<=cardinal & temp1<maximo]
if(length(fb)>0){minimo=max(temp1[result1<=cardinal & temp1<maximo])}else{minimo=NA}
aic=AIC(mod)
bic=BIC(mod)
graphs=data.frame("Parameter"=c("Optimum temperature",
"Optimum temperature response",
"Minimal temperature",
"Minimal temperature response",
"Predicted maximum basal value",
"Predicted minimum basal value",
"AIC","BIC","r-squared","RMSE"),
"values"=round(c(maximo,
respmax,
mini,
respmin,
maxl,
minimo,
aic,bic,r2,rmse),7))
models=data.frame(coef$coefficients)
models$Sig=ifelse(models$p.value>0.05,"ns",ifelse(models$p.value<0.01,"**","*"))
colnames(models)=c("Estimate","Std Error","t value","P-value","")
graficos=list("Coefficients"=models,
"values"=graphs,
graph)
print(graficos)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.