Nothing
#' Analysis: Logistic regression by treatment over time
#'
#' @description Performs the construction of a logistic regression graph by treatment over time
#' @param dados data.frame containing the responses of the evaluations in separate columns side by side and without the columns with the identification of the factors
#' @param trat vector of treatments with n repetitions
#' @param nrep Number of repetitions
#' @param time vector containing time
#' @param n total seeds per repetition
#' @param model logistic model according to drc package
#' @param ylab y-axis name
#' @param xlab x-axis name
#' @param legend.position Legend position
#'
#' @return Returns a logistic regression graph by treatment over time.
#' @export
#' @examples
#' data("substrate")
#' curve(substrate[,c(3:18)],
#' trat = substrate$Trat,
#' nrep = 4,
#' n=10,
#' time = 1:16)
curve=function(dados,
trat,
nrep,
time,
n,
model=LL.3(),
ylab="Emergence (%)",
xlab="Time (days)",
legend.position=c(0.2,0.8)){
requireNamespace("drc")
requireNamespace("dplyr")
requireNamespace("ggplot2")
# deviance
if(is.null(trat)==TRUE){
#n=length(colnames(dados))
resp=unlist(dados)
temp1=rep(time,e=length(rownames(dados)))
resp1=resp
data=data.frame(temp1,
resp1)
mod=drm((resp*100/n)~temp1,fct=model)
xp=seq(min(temp1),max(temp1),length=500)
yp=predict(mod,newdata = data.frame(temp1=xp))
data=data.frame(xp,yp)
graph=ggplot(data,aes(x=xp,y=yp))+geom_line()+
theme_bw()+theme(axis.text = element_text(size=12,color="black"))+
labs(x=xlab,y=ylab)
summary(mod)
print(graph)}
if(is.null(trat)==FALSE){
nc=length(colnames(dados))
resp=unlist(dados)
temp1=rep(time,e=length(trat))
trat=rep(trat,nc)
resp1=resp
data=data.frame(trat,
temp1,
resp1)
ntrat=length(unique(trat))
yp=as.list(1:ntrat)
coefs=(1:ntrat)
xp=seq(min(temp1),max(temp1),length=300)
for(i in 1:ntrat){
d1=data[trat==unique(trat)[i],]
mod=drm(((d1$resp1*100)/n)~d1$temp1,data = d1,fct=model)
coefs[i]=paste("b = ",
round(mod$coefficients[1],4),
"; d =",
round(mod$coefficients[2],4),
"; e = ",
round(mod$coefficients[3],4))
yp[[i]]=predict(mod,newdata = data.frame(temp1=xp))}
yp=unlist(yp)
xp=rep(xp,ntrat)
trat1=rep(unique(trat),e=length(xp)/ntrat)
data1=data.frame(trat1,xp,yp)
graph=ggplot(data1,aes(x=xp,y=yp,color=trat1,group=trat1))+
geom_line(size=0.8)+
scale_color_discrete(label=paste(unique(trat)," (",coefs,")",sep=""))+
theme_bw()+theme(axis.text = element_text(size=12,color="black"),
legend.position = legend.position)+
labs(x=xlab,y=ylab,color="")
print(graph)
}}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.