Nothing
#' Analysis: loess regression
#'
#' Fit a polynomial surface determined by one or more numerical predictors, using local fitting.
#' @param trat Numerical or complex vector with treatments
#' @param resp Numerical vector containing the response of the experiment.
#' @param ylab Variable response name (Accepts the \emph{expression}() function)
#' @param xlab treatments name (Accepts the \emph{expression}() function)
#' @param theme ggplot2 theme (\emph{default} is theme_bw())
#' @param error Error bar (It can be SE - \emph{default}, SD or FALSE)
#' @param legend.position legend position (\emph{default} is c(0.3,0.8))
#' @param cardinal defines the value of y considered extreme (\emph{default} considers 0 germination)
#' @param scale Sets x scale (\emph{default} is none, can be "log")
#' @param width.bar bar width
#' @param textsize Font size
#' @param pointsize shape size
#' @param linesize line size
#' @param pointshape format point (\emph{default} is 21)
#' @param font.family Font family (\emph{default} is sans)
#' @return
#' \describe{
#' \item{\code{Optimum temperature}}{Optimum temperature (equivalent to the maximum point)}
#' \item{\code{Optimum temperature response}}{Response at the optimal temperature (equivalent to the maximum point)}
#' \item{\code{Minimal temperature}}{Temperature that has the lowest response}
#' \item{\code{Minimal temperature response}}{Lowest predicted response}
#' \item{\code{Predicted maximum basal value}}{Lower basal limit temperature based on the value set by the user (default is 0)}
#' \item{\code{Predicted minimum basal value}}{Upper basal limit temperature based on the value set by the user (default is 0)}
#' \item{\code{grafico}}{Graph in ggplot2 with equation}
#' }
#' @seealso \link{loess}
#' @export
#' @note if the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
#' @author Gabriel Danilo Shimizu
#' @author Leandro Simoes Azeredo Goncalves
#' @examples
#' library(seedreg)
#' data("aristolochia")
#' attach(aristolochia)
#'
#' #================================
#' # Germination
#' #================================
#' loess_model(trat,germ)
#'
#' #================================
#' # Germination speed
#' #================================
#' loess_model(trat, vel, ylab=expression("v"~(dias^-1)))
loess_model=function(trat,
resp,
ylab="Germination (%)",
xlab=expression("Temperature ("^"o"*"C)"),
theme=theme_classic(),
error="SE",
cardinal=0,
width.bar=NA,
legend.position="top",
scale="none",
textsize=12,
pointsize=4.5,
linesize=0.8,
pointshape=21,
font.family="sans"){
requireNamespace("ggplot2")
requireNamespace("crayon")
ymean=tapply(resp,trat,mean)
if(is.na(width.bar)==TRUE){width.bar=0.01*mean(trat)}
if(error=="SE"){ysd=tapply(resp,trat,sd)/sqrt(tapply(resp,trat,length))}
if(error=="SD"){ysd=tapply(resp,trat,sd)}
if(error=="FALSE"){ysd=0}
desvio=ysd
xmean=tapply(trat,trat,mean)
mod=loess(resp~trat)
xp=seq(min(trat),max(trat),length.out = 1000)
preditos=data.frame(x=xp,
y=predict(mod,newdata = data.frame(trat=xp)))
x=preditos$x
y=preditos$y
data=data.frame(xmean,ymean)
data1=data.frame(trat=xmean,resp=ymean)
s="~~~ Loess~regression"
graph=ggplot(data,aes(x=xmean,y=ymean))
if(error!="FALSE"){graph=graph+geom_errorbar(aes(ymin=ymean-ysd,ymax=ymean+ysd),
width=width.bar,size=linesize)}
graph=graph+geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")+
theme+
geom_line(data=preditos,aes(x=x,
y=y,color="black"),size=linesize)+
scale_color_manual(name="",values=1,label="Loess regression")+
theme(axis.text = element_text(size=textsize,color="black",family = font.family),
legend.position = legend.position,
axis.title = element_text(family = font.family),
legend.text = element_text(size=textsize,family = font.family),
legend.direction = "vertical",
legend.text.align = 0,
legend.justification = 0)+
ylab(ylab)+xlab(xlab)
if(scale=="log"){graph=graph+scale_x_log10()}
temp1=seq(min(trat),max(trat),length.out=10000)
result=predict(mod,newdata = data.frame(trat=temp1),type="response")
maximo=temp1[which.max(result)]
respmax=result[which.max(result)]
mini=temp1[which.min(result)]
respmin=result[which.min(result)]
result1=round(result,0)
fa=temp1[result1<=cardinal & temp1>maximo]
if(length(fa)>0){maxl=max(temp1[result1<=cardinal & temp1>maximo])}else{maxl=NA}
fb=temp1[result1<=cardinal & temp1<maximo]
if(length(fb)>0){minimo=max(temp1[result1<=cardinal & temp1<maximo])}else{minimo=NA}
graphs=data.frame("Parameter"=c("Optimum temperature",
"Optimum temperature response",
"Minimal temperature",
"Minimal temperature response",
"Predicted maximum basal value",
"Predicted minimum basal value"),
"values"=round(c(maximo,respmax,
mini,
respmin,maxl,minimo),7))
graficos=list("test"=graphs,graph)
print(graficos)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.