R/normal_model.R

Defines functions normal_model

Documented in normal_model

#' Analysis: Normal model
#'
#' @param trat Numerical or complex vector with treatments
#' @param resp Numerical vector containing the response of the experiment.
#' @param error Error bar (It can be SE - \emph{default}, SD or FALSE)
#' @param ylab Variable response name (Accepts the \emph{expression}() function)
#' @param xlab treatments name (Accepts the \emph{expression}() function)
#' @param theme ggplot2 theme (\emph{default} is theme_classic())
#' @param legend.position legend position (\emph{default} is c(0.3,0.8))
#' @param r2 coefficient of determination of the mean or all values (\emph{default} is all)
#' @param cardinal defines the value of y considered extreme (\emph{default} considers 0 germination)
#' @param scale Sets x scale (\emph{default} is none, can be "log")
#' @param width.bar bar width
#' @param textsize Font size
#' @param pointsize shape size
#' @param linesize line size
#' @param pointshape format point (\emph{default} is 21)
#' @param font.family Font family (\emph{default} is sans)
#' @return
#'   \describe{
#'   \item{\code{Coefficients}}{Coefficients and their p values}
#'   \item{\code{Optimum temperature}}{Optimum temperature (equivalent to the maximum point)}
#'   \item{\code{Optimum temperature response}}{Response at the optimal temperature (equivalent to the maximum point)}
#'   \item{\code{Minimal temperature}}{Temperature that has the lowest response}
#'   \item{\code{Minimal temperature response}}{Lowest predicted response}
#'   \item{\code{Predicted maximum basal value}}{Lower basal limit temperature based on the value set by the user (default is 0)}
#'   \item{\code{Predicted minimum basal value}}{Upper basal limit temperature based on the value set by the user (default is 0)}
#'   \item{\code{AIC}}{Akaike information criterion}
#'   \item{\code{BIC}}{Bayesian Inference Criterion}
#'   \item{\code{r-squared}}{Determination coefficient}
#'   \item{\code{RMSE}}{Root mean square error}
#'   \item{\code{grafico}}{Graph in ggplot2 with equation}
#'   }
#' @details The model function for the normal model is:
#' \deqn{f(x) = a \epsilon^{-\frac{(x-b)^2)}{c^2}}}
#' @note if the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
#' @export
#' @author Gabriel Danilo Shimizu
#' @author Leandro Simoes Azeredo Goncalves
#' @examples
#' library(seedreg)
#' data("aristolochia")
#' attach(aristolochia)
#'
#' #================================
#' # Germination
#' #================================
#' normal_model(trat,germ)
#'
#' #================================
#' # Germination speed
#' #================================
#' normal_model(trat, vel, ylab=expression("v"~(dias^-1)))


normal_model=function(trat,
                      resp,
                      ylab="Germination (%)",
                      xlab=expression("Temperature ("^"o"*"C)"),
                      theme=theme_classic(),
                      error="SE",
                      legend.position="top",
                      cardinal=0,
                      r2="all",
                      width.bar=NA,
                      scale="none",
                      textsize=12,
                      pointsize=4.5,
                      linesize=0.8,
                      pointshape=21,
                      font.family="sans"){
  requireNamespace("ggplot2")
  requireNamespace("drc")
  requireNamespace("crayon")
  if(is.na(width.bar)==TRUE){width.bar=0.01*mean(trat)}
  ymean=tapply(resp,trat,mean)
  if(error=="SE"){ysd=tapply(resp,trat,sd)/sqrt(tapply(resp,trat,length))}
  if(error=="SD"){ysd=tapply(resp,trat,sd)}
  if(error=="FALSE"){ysd=0}
  desvio=ysd
  xmean=tapply(trat,trat,mean)
  mod=nls(resp ~ a*exp(-1/2*(trat-b)^2/c^2),
          start=c(a=100,b=mean(trat),c=5))
  coef=summary(mod)
  a=coef$coefficients[,1][1]
  b=coef$coefficients[,1][2]
  c=coef$coefficients[,1][3]
  if(r2=="all"){r2=cor(resp, fitted(mod))^2}
  if(r2=="mean"){r2=cor(ymean, predict(mod,newdata=data.frame(trat=unique(trat))))^2}
  r2=floor(r2*100)/100

  equation=sprintf("~~~y==%0.3e*exp(frac(-(x %s %0.3e)^2, %0.3e)) ~~~~~ italic(R^2) == %0.2f",
                   a,
                   ifelse(b >= 0, "+", "-"),
                   abs(b),
                   2*c^2,
                   r2)
  xp=seq(min(trat),max(trat),length.out = 1000)
  preditos=data.frame(x=xp,
                      y=predict(mod,newdata = data.frame(trat=xp)))
  predesp=predict(mod)
  predobs=resp
  rmse=sqrt(mean((predesp-predobs)^2))
  x=preditos$x
  y=preditos$y
  s=equation
  data=data.frame(xmean,ymean)
  data1=data.frame(trat=xmean,resp=ymean)
  graph=ggplot(data,aes(x=xmean,y=ymean))
  if(error!="FALSE"){graph=graph+geom_errorbar(aes(ymin=ymean-ysd,ymax=ymean+ysd),
                                               width=width.bar,size=linesize)}
  graph=graph+
    geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")+
    theme+
    geom_line(data=preditos,aes(x=x,
                                y=y,color="black"),size=linesize)+
    scale_color_manual(name="",values=1,label=parse(text = equation))+
    theme(axis.text = element_text(size=textsize,color="black",family = font.family),
          legend.position = legend.position,
          legend.text = element_text(size=textsize,family = font.family),
          axis.title = element_text(family = font.family),
          legend.direction = "vertical",
          legend.text.align = 0,
          legend.justification = 0)+
    ylab(ylab)+xlab(xlab)
  if(scale=="log"){graph=graph+scale_x_log10()}
  temp1=seq(min(trat),max(trat),length.out=10000)
  result=predict(mod,newdata = data.frame(trat=temp1),type="response")
  maximo=temp1[which.max(result)]
  respmax=result[which.max(result)]
  mini=temp1[which.min(result)]
  respmin=result[which.min(result)]

  result1=round(result,0)
  fa=temp1[result1<=cardinal & temp1>maximo]
  if(length(fa)>0){maxl=max(temp1[result1<=cardinal & temp1>maximo])}else{maxl=NA}
  fb=temp1[result1<=cardinal & temp1<maximo]
  if(length(fb)>0){minimo=max(temp1[result1<=cardinal & temp1<maximo])}else{minimo=NA}
  aic=AIC(mod)
  bic=BIC(mod)
  graphs=data.frame("Parameter"=c("Optimum temperature",
                                  "Optimum temperature response",
                                  "Minimal temperature",
                                  "Minimal temperature response",
                                  "Predicted maximum basal value",
                                  "Predicted minimum basal value",
                                  "AIC","BIC","r-squared","RMSE"),
                    "values"=round(c(maximo,
                               respmax,
                               mini,
                               respmin,
                               maxl,
                               minimo,
                               aic,bic,r2,rmse),7))
  models=data.frame(coef$coefficients)
  models$Sig=ifelse(models$Pr...t..>0.05,"ns",ifelse(models$Pr...t..<0.01,"**","*"))
  colnames(models)=c("Estimate","Std Error","t value","P-value","")
  graficos=list("Coefficients"=models,
                "values"=graphs,
                graph)
  print(graficos)

}

Try the seedreg package in your browser

Any scripts or data that you put into this service are public.

seedreg documentation built on July 8, 2022, 1:08 a.m.