dod_utils | R Documentation |
Various utility functions supporting the Degree-of-Difference (DOD) model.
optimal_tau(d.prime, d.prime0 = 0, ncat=3,
method=c("equi.prob", "LR.max", "se.min"),
tau.start=NULL, equi.tol = 1e-4, grad.tol = 1e-2,
do.warn=TRUE)
par2prob_dod(tau, d.prime)
dod_nll(tau, d.prime, same, diff, integer.tol=1e-8)
dod_null(same, diff, integer.tol=1e-8)
dod_null_tau(same, diff)
d.prime |
the value of d-prime; non-negative numerical scalar. |
d.prime0 |
d-prime under the null hypothesis; only used in
|
ncat |
the number of response categories in the DOD model. |
method |
the method with which to choose the boundary
parameters — see |
tau.start |
optional vector of starting values. |
equi.tol |
convergence tolerence for the |
grad.tol |
gradient convergence tolerence. |
do.warn |
issue warning if estimation of optimal tau does not converge? |
same |
The answers to same-pairs; either 1) a numeric vector of counts of length equal to the number of response categories ordered appropriately or 2) a factor where the levels indicate the response categories. |
diff |
the answers to different-pairs in the same format as
|
tau |
vector of boundary parameters in the DOD model. |
integer.tol |
tolerence for when |
optimal_tau |
computes optimal boundary parameters (tau) using various criteria. |
par2prob_dod |
computes the multinomial probability vectors from DOD model parameters. |
dod_nll |
implements the negative log-likelihood function for the DOD model. |
dod_null |
implements the negative log-likelihood function for the DOD model where d-prime = 0. |
dod_null_tau |
Estimates tau for the DOD model where d-prime = 0. |
Rune Haubo B Christensen
dod
, dod_fit
,
dodSim
, dodPwr
,
dodControl
## Compute optimal boundary parameters using the LR.max criterion for
## d.prime=1 with 4 categories:
dp <- 1
(Tau <- optimal_tau(d.prime=dp, d.prime0 = 0, ncat=4,
method="LR.max")$tau)
## [1] 1.244642 2.109140 3.098985
## This set of boundary parameters optimize the power of the DOD test
## with d.prime = 1 under the alternative hypothesis.
## Compute the probability that an observation will fall in each of
## the (here 2*4=8) response categories given values of tau and d.prime:
par2prob_dod(tau=Tau, d.prime=dp)
## [,1] [,2] [,3] [,4]
## p.same 0.6211921 0.2429480 0.1074307 0.02842911
## p.diff 0.5124361 0.2571691 0.1596425 0.07075227
## Compute the negative log-likelihood given data and parameters:
Same <- c(10, 20, 30, 20)
Diff <- c(10, 10, 20, 40)
dod_nll(tau=Tau, d.prime=dp, same=Same,
diff=Diff)
## [1] 334.0986
## Compute the negative log-likelihood under the null hypothesis
## (where d.prime = 0):
dod_null(same=Same, diff=Diff)
## [1] 208.8154
## ## The boundary parameters for this:
(Tau0 <- dod_null_tau(same=Same, diff=Diff))
## [1] 0.2224709 0.5688675 1.2546147
## Some equalities:
stopifnot(
dod_nll(tau=Tau0, d.prime=0, same=Same, diff=Diff) ==
dod_null(same=Same, diff=Diff))
stopifnot(
dod_null(same=Same, diff=Diff) ==
-dod_fit(same=Same, diff=Diff, d.prime=0)$logLik
)
stopifnot(
dod_nll(same=Same, diff=Diff, tau=Tau, d.prime=dp) ==
-dod_fit(same=Same, diff=Diff, tau=Tau, d.prime=dp)$logLik
)
stopifnot(all(
dod_null_tau(same=Same, diff=Diff) ==
dod_fit(Same, Diff, d.prime=0)$tau))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.