Nothing
#' Mixture hidden Markov model for the mvad data
#'
#' A mixture hidden Markov model (MHMM) fitted for the \code{\link[TraMineR]{mvad}} data.
#'
#' @format A mixture hidden Markov model of class \code{mhmm}:
#' two clusters including 3 and 4 hidden states.
#' No covariates.
#'
#'
#' @details
#' The model is loaded by calling \code{data(mhmm_mvad)}. It was created with the
#' following code:
#' \preformatted{
#' data("mvad", package = "TraMineR")
#'
#' mvad_alphabet <-
#' c("employment", "FE", "HE", "joblessness", "school", "training")
#' mvad_labels <- c("employment", "further education", "higher education",
#' "joblessness", "school", "training")
#' mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
#' mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet,
#' states = mvad_scodes, labels = mvad_labels, xtstep = 6)
#'
#' attr(mvad_seq, "cpal") <- colorpalette[[6]]
#'
#' # Starting values for the emission matrices
#' emiss_1 <- matrix(
#' c(0.01, 0.01, 0.01, 0.01, 0.01, 0.95,
#' 0.95, 0.01, 0.01, 0.01, 0.01, 0.01,
#' 0.01, 0.01, 0.01, 0.95, 0.01, 0.01),
#' nrow = 3, ncol = 6, byrow = TRUE)
#'
#' emiss_2 <- matrix(
#' c(0.01, 0.01, 0.01, 0.06, 0.90, 0.01,
#' 0.01, 0.95, 0.01, 0.01, 0.01, 0.01,
#' 0.01, 0.01, 0.95, 0.01, 0.01, 0.01,
#' 0.95, 0.01, 0.01, 0.01, 0.01, 0.01),
#' nrow = 4, ncol = 6, byrow = TRUE)
#'
#' # Starting values for the transition matrix
#'
#' trans_1 <- matrix(
#' c(0.95, 0.03, 0.02,
#' 0.01, 0.98, 0.01,
#' 0.01, 0.01, 0.98),
#' nrow = 3, ncol = 3, byrow = TRUE)
#'
#' trans_2 <- matrix(
#' c(0.97, 0.01, 0.01, 0.01,
#' 0.01, 0.97, 0.01, 0.01,
#' 0.01, 0.01, 0.97, 0.01,
#' 0.01, 0.01, 0.01, 0.97),
#' nrow = 4, ncol = 4, byrow = TRUE)
#'
#' # Starting values for initial state probabilities
#' initial_probs_1 <- c(0.5, 0.25, 0.25)
#' initial_probs_2 <- c(0.4, 0.4, 0.1, 0.1)
#'
#' # Building a hidden Markov model with starting values
#' init_mhmm_mvad <- build_mhmm(observations = mvad_seq,
#' transition_probs = list(trans_1, trans_2),
#' emission_probs = list(emiss_1, emiss_2),
#' initial_probs = list(initial_probs_1, initial_probs_2))
#'
#' # Fit the model
#' set.seed(123)
#' mhmm_mvad <- fit_model(init_mhmm_mvad, control_em = list(restart = list(times = 25)))$model
#'
#' }
#'
#' @seealso Examples of building and fitting MHMMs in \code{\link{build_mhmm}} and
#' \code{\link{fit_model}}; and \code{\link[TraMineR]{mvad}} for more information on the data.
#'
#' @docType data
#' @keywords datasets
#' @name mhmm_mvad
#' @examples
#' data("mhmm_mvad")
#'
#' summary(mhmm_mvad)
#'
#' if (interactive()) {
#' # Plotting the model for each cluster (change with Enter)
#' plot(mhmm_mvad)
#' }
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.