skatMeta: Combine SKAT analyses from one or more studies

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/skatMeta.R

Description

Takes as input 'seqMeta' objects (from the prepScores function), and meta-analyzes them.

Usage

1
2
3
skatMeta(..., SNPInfo = NULL, wts = function(maf) {     stats::dbeta(maf, 1,
  25) }, method = "saddlepoint", snpNames = "Name", aggregateBy = "gene",
  mafRange = c(0, 0.5), verbose = FALSE)

Arguments

...

seqMeta objects

SNPInfo

The SNP Info file. This should contain the fields listed in snpNames and aggregateBy. Only SNPs in this table will be meta analyzed, so this may be used to restrict the analysis.

wts

Either a function to calculate testing weights, or a character specifying a vector of weights in the SNPInfo file. For skatMeta the default are the ‘beta’ weights.

method

p-value calculation method. Default is 'saddlepoint', 'integration' is the Davies method used in the SKAT package. See pchisqsum() for more details.

snpNames

The field of SNPInfo where the SNP identifiers are found. Default is 'Name'

aggregateBy

The field of SNPInfo on which the skat results were aggregated. Default is 'gene'. Though gene groupings are not explicitely required for single snp analysis, it is required to find where single snp information is stored in the seqMeta objects.

mafRange

Range of MAF's to include in the analysis (endpoints included). Default is all SNPs (0 <= MAF <= 0.5).

verbose

logical. Whether progress bars should be printed.

Details

skatMeta implements an efficient SKAT meta analysis by meta-analyzing scores statistics and their variances.

Note: all studies must use coordinated SNP Info files - that is, the SNP names and gene definitions must be the same.

Please see the package vignette for more details.

Value

a data frame with the following columns:

gene

the name of the gene or unit of aggregation being meta analyzed

p

p-value of the SKAT test.

Q

The SKAT Q-statistic, defined as sum_j w_jS_j, where S_j is the squared score for SNP j, and w_j is a weight.

cmaf

The cumulative minor allele frequency.

nmiss

The number of 'missing' SNPs. For a gene with a single SNP this is the number of individuals which do not contribute to the analysis, due to studies that did not report results for that SNP. For a gene with multiple SNPs, is totalled over the gene.

nsnps

The number of SNPs in the gene.

Author(s)

Arie Voorman, Jennifer Brody

References

Wu, M.C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011) Rare Variant Association Testing for Sequencing Data Using the Sequence Kernel Association Test (SKAT). American Journal of Human Genetics.

See Also

prepScores burdenMeta singlesnpMeta skatOMeta

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
###load example data for two studies:
### see ?seqMetaExample	
data(seqMetaExample)

####run on each study:
cohort1 <- prepScores(Z=Z1, y~sex+bmi, SNPInfo=SNPInfo, data=pheno1)
cohort2 <- prepScores(Z=Z2, y~sex+bmi, SNPInfo=SNPInfo, kins=kins, data=pheno2)

#### combine results:
##skat
out <- skatMeta(cohort1, cohort2, SNPInfo = SNPInfo)
head(out)

## Not run: 
##T1 test
out.t1 <- burdenMeta(cohort1,cohort2, SNPInfo = SNPInfo, mafRange = c(0,0.01))
head(out.t1)

##single snp tests:
out.ss <- singlesnpMeta(cohort1,cohort2, SNPInfo = SNPInfo)
head(out.ss)

########################
####binary data

cohort1 <- prepScores(Z=Z1, ybin~1, family=binomial(), SNPInfo=SNPInfo, data=pheno1)
out.bin <- skatMeta(cohort1, SNPInfo=SNPInfo)
head(out.bin)

####################
####survival data
cohort1 <- prepCox(Z=Z1, Surv(time,status)~strata(sex)+bmi, SNPInfo=SNPInfo, data=pheno1)
out.surv <- skatMeta(cohort1, SNPInfo=SNPInfo)
head(out.surv)

##### Compare with SKAT on full data set
require(SKAT)
n <- nrow(pheno1)
bigZ <- matrix(NA,2*n,nrow(SNPInfo))
colnames(bigZ) <- SNPInfo$Name

for(gene in unique(SNPInfo$gene)) {
 snp.names <- SNPInfo$Name[SNPInfo$gene == gene]
   bigZ[1:n,SNPInfo$gene == gene][ , snp.names \%in\% colnames(Z1)] <- 
                   Z1[ , na.omit(match(snp.names,colnames(Z1)))]
   bigZ[(n+1):(2*n),SNPInfo$gene == gene][ , snp.names \%in\% colnames(Z2)] <- 
                   Z2[ , na.omit(match(snp.names,colnames(Z2)))]
}

pheno <- rbind(pheno1[,c("y","sex","bmi")], pheno2[,c("y","sex","bmi")])

obj <- SKAT_Null_Model(y~sex+bmi+gl(2,nrow(pheno1)), data=pheno)
skat.pkg.p <- c(by(SNPInfo$Name, SNPInfo$gene, function(snp.names) {
           inds <- match(snp.names,colnames(bigZ))
           if(sum(!is.na(inds)) ==0 ) return(1)
           SKAT(bigZ[,na.omit(inds)],obj, is_check=TRUE, missing=1)$p.value
           }))

head(cbind(out$p,skat.pkg.p))

#Note: SKAT ignores family strucutre, resulting in p-values that are systematically too small: 
plot(y=out$p,x=skat.pkg.p, ylab = "SKAT meta p-values", xlab = "SKAT p-values")
abline(0,1)

ignore family structure:
cohort1 <- prepScores(Z=Z1, y~sex+bmi, SNPInfo=SNPInfo, data=pheno1)
cohort2 <- prepScores(Z=Z2, y~sex+bmi, SNPInfo=SNPInfo, data=pheno2)

out.nofam <- skatMeta(cohort1,cohort2,SNPInfo=SNPInfo)
plot(y=out.nofam$p,x=skat.pkg.p, ylab = "SKAT meta p-values", xlab = "SKAT p-values")
abline(0,1)

## End(Not run)

seqMeta documentation built on May 2, 2019, 10:59 a.m.