View source: R/est.incidence.R
est.incidence | R Documentation |
This function models seroincidence using maximum likelihood estimation; that is, it finds the value of the seroincidence parameter which maximizes the likelihood (i.e., joint probability) of the data.
est.incidence(
pop_data,
curve_params,
noise_params,
antigen_isos = pop_data$antigen_iso %>% unique(),
lambda_start = 0.1,
stepmin = 1e-08,
stepmax = 3,
verbose = FALSE,
build_graph = FALSE,
print_graph = build_graph & verbose,
...
)
pop_data |
a data.frame with cross-sectional serology data per antibody and age, and additional columns |
curve_params |
a
|
noise_params |
a
|
antigen_isos |
Character vector with one or more antibody names. Values must match |
lambda_start |
starting guess for incidence rate, in years/event. |
stepmin |
A positive scalar providing the minimum allowable relative step length. |
stepmax |
a positive scalar which gives the maximum allowable
scaled step length. |
verbose |
logical: if TRUE, print verbose log information to console |
build_graph |
whether to graph the log-likelihood function across a range of incidence rates (lambda values) |
print_graph |
whether to display the log-likelihood curve graph in the course of running |
... |
Arguments passed on to
|
a "seroincidence"
object, which is a stats::nlm()
fit object with extra meta-data attributes lambda_start
, antigen_isos
, and ll_graph
library(dplyr)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
est1 <- est.incidence(
pop_data = xs_data,
curve_params = curve,
noise_params = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
)
summary(est1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.