| f_dev0 | R Documentation | 
Calculate negative log-likelihood (deviance) for one antigen:isotype pair and incidence rate
f_dev0(lambda, csdata, lnpars, cond)
lambda | 
 
  | 
csdata | 
 cross-sectional sample data containing variables   | 
lnpars | 
 longitudinal antibody decay model parameters   | 
cond | 
 measurement noise parameters   | 
interface with C lib serocalc.so
a numeric() negative log-likelihood,
corresponding to input lambda
library(dplyr)
library(tibble)
# load in longitudinal parameters
curve_params <-
  typhoid_curves_nostrat_100 %>%
  filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
# load in pop data
xs_data <-
  sees_pop_data_pk_100
#Load noise params
noise_params <- tibble(
  antigen_iso = c("HlyE_IgG", "HlyE_IgA"),
  nu = c(0.5, 0.5),                          # Biologic noise (nu)
  eps = c(0, 0),                             # M noise (eps)
  y.low = c(1, 1),                           # low cutoff (llod)
  y.high = c(5e6, 5e6))                      # high cutoff (y.high)
cur_antibody = "HlyE_IgA"
cur_data <-
  xs_data %>%
  dplyr::filter(
   .data$catchment == "dhaka",
   .data$antigen_iso == cur_antibody) %>%
  dplyr::slice_head(n = 100)
cur_curve_params <-
  curve_params %>%
  dplyr::filter(.data$antigen_iso == cur_antibody) %>%
  dplyr::slice_head(n = 100)
cur_noise_params <-
  noise_params %>%
  dplyr::filter(.data$antigen_iso == cur_antibody)
if(!is.element('d', names(cur_curve_params)))
{
  cur_curve_params <-
    cur_curve_params %>%
    dplyr::mutate(
      alpha = .data$alpha * 365.25,
      d = .data$r - 1)
}
lambda = 0.1
f_dev0(
    lambda = lambda,
    csdata = cur_data,
    lnpars = cur_curve_params,
    cond = cur_noise_params
  )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.