gset | R Documentation |
Creation and manipulation of generalized sets.
gset(support, memberships, charfun, elements, universe, bound,
assume_numeric_memberships)
as.gset(x)
is.gset(x)
gset_support(x)
gset_core(x, na.rm = FALSE)
gset_peak(x, na.rm = FALSE)
gset_height(x, na.rm = FALSE)
gset_universe(x)
gset_bound(x)
gset_memberships(x, filter = NULL)
gset_transform_memberships(x, FUN, ...)
gset_concentrate(x)
gset_dilate(x)
gset_normalize(x, height = 1)
gset_defuzzify(x,
method = c("meanofmax", "smallestofmax",
"largestofmax", "centroid"))
gset_is_empty(x, na.rm = FALSE)
gset_is_subset(x, y, na.rm = FALSE)
gset_is_proper_subset(x, y, na.rm = FALSE)
gset_is_equal(x, y, na.rm = FALSE)
gset_contains_element(x, e)
gset_is_set(x, na.rm = FALSE)
gset_is_multiset(x, na.rm = FALSE)
gset_is_fuzzy_set(x, na.rm = FALSE)
gset_is_set_or_multiset(x, na.rm = FALSE)
gset_is_set_or_fuzzy_set(x, na.rm = FALSE)
gset_is_fuzzy_multiset(x)
gset_is_crisp(x, na.rm = FALSE)
gset_has_missings(x)
gset_cardinality(x, type = c("absolute", "relative"), na.rm = FALSE)
gset_union(...)
gset_sum(...)
gset_difference(...)
gset_product(...)
gset_mean(x, y, type = c("arithmetic", "geometric", "harmonic"))
gset_intersection(...)
gset_symdiff(...)
gset_complement(x, y)
gset_power(x)
gset_cartesian(...)
gset_combn(x, m)
e(x, memberships = 1L)
is_element(e)
## S3 method for class 'gset'
cut(x, level = 1, type = c("alpha", "nu"), strict = FALSE, ...)
## S3 method for class 'gset'
mean(x, ..., na.rm = FALSE)
## S3 method for class 'gset'
## median(x, na.rm = FALSE, ...) [R >= 3.4.0]
## median(x, na.rm) [R < 3.4.0]
## S3 method for class 'gset'
length(x)
## S3 method for class 'gset'
lengths(x, use.names = TRUE)
x |
For |
y |
A (g)set object. |
e |
An object of class |
filter |
Optional vector of elements to be filtered. |
m |
Number of elements to choose. |
support |
A set of elements giving the support of the gset (elements with non-zero memberships). Must be a subset of the universe, if specified. |
memberships |
For an (“ordinary”) set: 1L (or simply missing).
For a fuzzy set: a value between 0 and 1. For a multiset: a
positive integer. For a fuzzy multiset: a list of
multisets with elements from the unit interval (or a list of vectors
interpreted as such).
Otherwise, the argument will be transformed using |
elements |
A set (or list) of |
charfun |
A function taking an object and returning the membership. |
bound |
Integer used to compute the absolute complement for
(fuzzy) multisets. If |
assume_numeric_memberships |
When applying |
FUN |
A function, to be applied to a membership vector. |
type |
For |
strict |
Logical indicating whether the cut level must be exceeded strictly (“greater than”) or not (“greater than or equal”). |
height |
Double from the unit interval for scaling memberships. |
universe |
An optional set of elements. If |
method |
|
level |
The minimum membership level. |
na.rm |
logical indicating whether |
use.names |
logical; should the names of |
... |
For |
These functions represent basic infrastructure for handling generalized sets of general (R) objects.
A generalized set (or gset) is set of pairs (e, f)
, where
e
is some set element and f
is the characteristic (or
membership) function. For (“ordinary”) sets
f
maps to \{0, 1\}
,
for fuzzy sets into the unit interval, for multisets into the natural
numbers, and for fuzzy multisets f
maps to the set of multisets
over the unit interval.
The gset_is_foo()
predicates
are vectorized. In addition
to the methods defined, one can use the following operators:
|
for the union, &
for the
intersection, +
for the sum, -
for
the difference, %D%
for the symmetric difference,
*
and ^n
for the
(n
-fold) cartesian product, 2^
for the power set,
%e%
for the element-of predicate,
<
and <=
for
the (proper) subset predicate, >
and >=
for
the (proper) superset predicate, and ==
and !=
for
(in)equality.
The Summary
methods do also work if
defined for the set elements.
The mean
and median
methods try to convert the object to a numeric vector before calling
the default methods. set_combn
returns the gset of all
subsets of specified length.
gset_support
, gset_core
, and gset_peak
return the set of elements with memberships greater than zero, equal
to one, and equal to the maximum membership, respectively.
gset_memberships
returns the membership
vector(s) of a given (tuple of) gset(s), optionally
restricted to the elements specified by filter
.
gset_height
returns only
the largest membership degree.
gset_cardinality
computes either the absolute or the
relative cardinality, i.e. the memberships sum, or the absolute
cardinality divided by the number of elements, respectively.
The length
method for gsets gives the (absolute) cardinality.
The lengths
method coerces the set to a list
before applying the length
method on its elements.
gset_transform_memberships
applies function FOO
to
the membership vector of the supplied gset and returns the transformed
gset. The transformed memberships are guaranteed to be in the unit
interval.
gset_concentrate
and gset_dilate
are convenience
functions, using the square and the square root,
respectively. gset_normalize
divides the memberships by their
maximum and scales with height
.
gset_product
(gset_mean
) of some gsets
compute the gset with the corresponding memberships multiplied (averaged).
The cut
method provides both \alpha
- and \nu
-cuts.
\alpha
-cuts “filter” all elements with memberships
greater than (or equal to) level
—the result, thus, is a crisp
(multi)set. \nu
-cuts select those elements with a
multiplicity exceeding level
(only sensible for (fuzzy) multisets).
Because set elements are unordered, it is not allowed to use
positional indexing. However, it is possible to
do indexing using element labels or
simply the elements themselves (useful, e.g., for subassignment).
In addition, it is possible to iterate over
all elements using for
and lapply
/sapply
.
gset_contains_element
is vectorized in e
, that is, if e
is an atomic vector or list, the is-element operation is performed
element-wise, and a logical vector returned. Note that, however,
objects of class tuple
are taken as atomic objects to
correctly handle sets of tuples.
D. Meyer and K. Hornik (2009), Generalized and customizable sets in R, Journal of Statistical Software 31(2), 1–27. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v031.i02")}.
set
for “ordinary” sets,
gset_outer
, and
tuple
for tuples (“vectors”).
## multisets
(A <- gset(letters[1:5], memberships = c(3, 2, 1, 1, 1)))
(B <- gset(c("a", "c", "e", "f"), memberships = c(2, 2, 1, 2)))
rep(B, 2)
gset_memberships(tuple(A, B), c("a","c"))
gset_union(A, B)
gset_intersection(A, B)
gset_complement(A, B)
gset_is_multiset(A)
gset_sum(A, B)
gset_difference(A, B)
## fuzzy sets
(A <- gset(letters[1:5], memberships = c(1, 0.3, 0.8, 0.6, 0.2)))
(B <- gset(c("a", "c", "e", "f"), memberships = c(0.7, 1, 0.4, 0.9)))
cut(B, 0.5)
A * B
A <- gset(3L, memberships = 0.5, universe = 1:5)
!A
## fuzzy multisets
(A <- gset(c("a", "b", "d"),
memberships = list(c(0.3, 1, 0.5), c(0.9, 0.1),
gset(c(0.4, 0.7), c(1, 2)))))
(B <- gset(c("a", "c", "d", "e"),
memberships = list(c(0.6, 0.7), c(1, 0.3), c(0.4, 0.5), 0.9)))
gset_union(A, B)
gset_intersection(A, B)
gset_complement(A, B)
## other operations
mean(gset(1:3, c(0.1,0.5,0.9)))
median(gset(1:3, c(0.1,0.5,0.9)))
## vectorization
list(gset(1, 0.5), gset(2, 2L), gset()) <= gset(1, 2L)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.