Nothing
#' @export
summary.variable_selection <- function(object, ...) {
cat(paste0(
"Calibrated parameters: lambda = ",
formatC(Argmax(object)[1, 1], format = "f", digits = 3),
" and pi = ",
formatC(Argmax(object)[1, 2], format = "f", digits = 3)
))
cat("\n")
cat("\n")
cat(paste0(
"Maximum stability score: ",
formatC(max(object$S, na.rm = TRUE), format = "f", digits = 3)
))
cat("\n")
cat("\n")
cat(paste0(
"Number of selected variable(s): ",
sum(SelectedVariables(object))
))
cat("\n")
}
#' @export
summary.structural_model <- function(object, ...) {
cat(paste0(
"Calibrated parameters: lambda = ",
formatC(Argmax(object)[1, 1], format = "f", digits = 3),
" and pi = ",
formatC(Argmax(object)[1, 2], format = "f", digits = 3)
))
cat("\n")
cat("\n")
cat(paste0(
"Maximum stability score: ",
formatC(max(object$S, na.rm = TRUE), format = "f", digits = 3)
))
cat("\n")
cat("\n")
cat(paste0(
"Number of selected arrow(s): ",
sum(SelectedVariables(object))
))
cat("\n")
}
#' @export
summary.graphical_model <- function(object, ...) {
if (ncol(object$S) > 1) {
cat(paste0("Calibrated parameters:"))
cat("\n")
for (k in seq_len(ncol(object$S))) {
cat(paste0(
"Block ", k, ": lambda = ",
formatC(Argmax(object)[k, 1], format = "f", digits = 3),
" and pi = ",
formatC(Argmax(object)[k, 2], format = "f", digits = 3)
))
cat("\n")
}
cat("\n")
cat("Maximum stability scores: ")
cat("\n")
for (k in seq_len(ncol(object$S))) {
cat(paste0(
"Block ", k, ": ",
formatC(max(object$S[, k], na.rm = TRUE), format = "f", digits = 3)
))
cat("\n")
}
cat("\n")
cat("Number of selected edge(s): ")
cat("\n")
adjacency <- Adjacency(object)
adjacency <- adjacency[upper.tri(adjacency)]
bigblocks <- BlockMatrix(pk = object$params$pk)
bigblocks <- bigblocks[upper.tri(bigblocks)]
for (k in seq_len(ncol(object$S))) {
cat(paste0(
"Block ", k, ": ",
round(sum(adjacency[bigblocks == k]))
))
cat("\n")
}
cat(paste0(
"Total: ",
sum(Adjacency(object)) / 2
))
} else {
cat(paste0(
"Calibrated parameters: lambda = ",
formatC(Argmax(object)[1, 1], format = "f", digits = 3),
" and pi = ",
formatC(Argmax(object)[1, 2], format = "f", digits = 3)
))
cat("\n")
cat("\n")
cat(paste0(
"Maximum stability score: ",
formatC(max(object$S[, 1], na.rm = TRUE), format = "f", digits = 3)
))
cat("\n")
cat("\n")
cat(paste0(
"Number of selected edge(s): ",
sum(Adjacency(object)) / 2
))
}
cat("\n")
}
#' @export
summary.bi_selection <- function(object, ...) {
cat(paste0("Calibrated parameters (X):"))
cat("\n")
for (k in seq_len(nrow(object$summary))) {
if ("alphax" %in% colnames(object$summary)) {
cat(paste0(
"Component ", k, ": n = ",
formatC(object$summary[k, "nx"], format = "f", digits = 3),
", alpha = ",
formatC(object$summary[k, "alphax"], format = "f", digits = 3),
" and pi = ",
formatC(object$summary[k, "pix"], format = "f", digits = 3)
))
} else {
cat(paste0(
"Component ", k, ": n = ",
formatC(object$summary[k, "nx"], format = "f", digits = 3),
" and pi = ",
formatC(object$summary[k, "pix"], format = "f", digits = 3)
))
}
cat("\n")
}
if ("ny" %in% colnames(object$summary)) {
cat("\n")
cat(paste0("Calibrated parameters (Y):"))
cat("\n")
for (k in seq_len(nrow(object$summary))) {
if ("alphay" %in% colnames(object$summary)) {
cat(paste0(
"Component ", k, ": n = ",
formatC(object$summary[k, "ny"], format = "f", digits = 3),
", alpha = ",
formatC(object$summary[k, "alphay"], format = "f", digits = 3),
" and pi = ",
formatC(object$summary[k, "piy"], format = "f", digits = 3)
))
} else {
cat(paste0(
"Component ", k, ": n = ",
formatC(object$summary[k, "ny"], format = "f", digits = 3),
" and pi = ",
formatC(object$summary[k, "piy"], format = "f", digits = 3)
))
}
cat("\n")
}
}
cat("\n")
if (nrow(object$summary) > 1) {
cat("Maximum stability scores (X): ")
} else {
cat("Maximum stability score (X): ")
}
cat("\n")
for (k in seq_len(nrow(object$summary))) {
cat(paste0(
"Component ", k, ": ",
formatC(max(object$summary[k, "S"], na.rm = TRUE), format = "f", digits = 3)
))
cat("\n")
}
cat("\n")
cat("Number of selected variable(s) (X): ")
cat("\n")
for (k in seq_len(nrow(object$summary))) {
cat(paste0(
"Component ", k, ": ",
round(sum(object$selectedX[, k]))
))
cat("\n")
}
if ("ny" %in% colnames(object$summary)) {
cat("\n")
cat("Number of selected variable(s) (Y): ")
cat("\n")
for (k in seq_len(nrow(object$summary))) {
cat(paste0(
"Component ", k, ": ",
round(sum(object$selectedY[, k]))
))
cat("\n")
}
}
cat("\n")
}
#' @export
summary.clustering <- function(object, ...) {
cat(paste0(
"Calibrated parameters: nc = ",
formatC(Argmax(object)[1, 1], format = "f", digits = 3),
ifelse(!is.na(Argmax(object)[1, 2]),
yes = paste0(" and lambda = ", formatC(Argmax(object)[1, 2], format = "f", digits = 3)),
no = ""
)
))
cat("\n")
cat("\n")
cat(paste0(
"Maximum consensus score: ",
formatC(max(object$S, na.rm = TRUE), format = "f", digits = 3)
))
cat("\n")
}
#' @export
summary.incremental <- function(object, ...) {
cat(paste0("Performances of refitted models:"))
cat("\n")
cat("\n")
mat <- plot.incremental(object, output_data = TRUE, ...)
for (i in seq_len(ncol(mat))) {
cat(paste0(
ifelse(i == 1, yes = " ", no = "+ "),
colnames(mat)[i],
": ",
formatC(mat[1, i], format = "f", digits = 3)
))
cat("\n")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.