Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----install packages, echo=FALSE, warning=FALSE, results='hide', message=FALSE----
###*****************************
# INITIAL COMMANDS TO RESET THE SYSTEM
rm(list = ls())
if (is.integer(dev.list())){dev.off()}
cat("\014")
seedNo=14159
set.seed(seedNo)
###*****************************
###*****************************
require(sicegar)
require(dplyr)
require(cowplot)
###*****************************
## ----generate data for double - sigmoidal-------------------------------------
time <- seq(3, 24, 0.5)
noise_parameter <- 0.2
intensity_noise <- runif(n = length(time), min = 0, max = 1) * noise_parameter
intensity <- doublesigmoidalFitFormula(time,
finalAsymptoteIntensityRatio = .3,
maximum = 4,
slope1Param = 1,
midPoint1Param = 7,
slope2Param = 1,
midPointDistanceParam = 8)
intensity <- intensity + intensity_noise
dataInput <- data.frame(time, intensity)
## -----------------------------------------------------------------------------
normalizedInput <- normalizeData(dataInput = dataInput,
dataInputName = "doubleSigmoidalSample")
# Fit sigmoidal model
sigmoidalModel <- multipleFitFunction(dataInput = normalizedInput,
model = "sigmoidal",
n_runs_min = 20,
n_runs_max = 500,
showDetails = FALSE)
# Fit double-sigmoidal model
doubleSigmoidalModel <- multipleFitFunction(dataInput = normalizedInput,
model = "doublesigmoidal",
n_runs_min = 20,
n_runs_max = 500,
showDetails = FALSE)
## ----linear sigmoidal amd double-sigmoidal fits to double-sigmoidal data------
# Calculate additional parameters
sigmoidalModel <- parameterCalculation(sigmoidalModel)
# Calculate additional parameters
doubleSigmoidalModel <- parameterCalculation(doubleSigmoidalModel)
## ----echo=FALSE, warning=FALSE, message=FALSE, fig.width=7--------------------
f1 <- figureModelCurves(dataInput = normalizedInput,
sigmoidalFitVector = sigmoidalModel,
showParameterRelatedLines = TRUE)
f2 <- figureModelCurves(dataInput = normalizedInput,
doubleSigmoidalFitVector = doubleSigmoidalModel,
showParameterRelatedLines = TRUE)
plot_grid(f1, f2)
## -----------------------------------------------------------------------------
# now we can categorize the fits
decisionProcess <- categorize(threshold_minimum_for_intensity_maximum = 0.3,
threshold_intensity_range = 0.1,
threshold_t0_max_int = 0.05,
parameterVectorSigmoidal = sigmoidalModel,
parameterVectorDoubleSigmoidal = doubleSigmoidalModel)
## -----------------------------------------------------------------------------
print(decisionProcess$decision)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.