Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message = FALSE---------------------------------------------------
library(simpr)
set.seed(2001)
## ----correct_order------------------------------------------------------------
specify(a = ~ runif(6),
b = ~ a + rnorm(6)) %>%
generate(1)
## ----correct_number-----------------------------------------------------------
specify(a = ~ runif(6),
b = ~ rnorm(6)) %>%
generate(1)
## ----recycle_number-----------------------------------------------------------
specify(a = ~ runif(1),
b = ~ rnorm(6)) %>%
generate(1)
## ----x_error_fixed------------------------------------------------------------
specify(y = ~ runif(6),
a = ~ y + runif(6)) %>%
generate(1)
## ----multicolumn_default------------------------------------------------------
specify(a = ~ MASS::mvrnorm(6,
mu = rep(0, 3),
Sigma = diag(rep(1, 3)))) %>%
generate(1)
## ----multicolumn_sep----------------------------------------------------------
specify(a = ~ MASS::mvrnorm(6,
mu = rep(0, 3),
Sigma = diag(rep(1, 3))),
.sep = ".") %>%
generate(1)
## ----multicolumn_two_sided----------------------------------------------------
specify(y = c(a, b, c) ~ MASS::mvrnorm(6,
mu = rep(0, 3),
Sigma = diag(rep(1, 3)))) %>%
generate(1)
## ----multicolumn_.use_names---------------------------------------------------
specify(a = ~ MASS::mvrnorm(6,
mu = rep(0, 3),
Sigma = diag(rep(1, 3))) %>%
magrittr::set_colnames(c("d", "e", "f"))) %>%
generate(1)
## ----multicolumn_refer--------------------------------------------------------
specify(a = ~ MASS::mvrnorm(6,
mu = rep(0, 3),
Sigma = diag(rep(1, 3))),
b = ~ a_1 - a_2) %>%
generate(1)
## ----define_samp_size---------------------------------------------------------
specify(a = ~ rnorm(samp_size)) %>%
define(samp_size = c(10, 20)) %>%
generate(1)
## ----define_samp_size_mu------------------------------------------------------
specify(a = ~ rnorm(samp_size, mu)) %>%
define(samp_size = c(10, 20),
mu = c(0, 10)) %>%
generate(1)
## ----define_matrix------------------------------------------------------------
specify(a = ~ MASS::mvrnorm(6, rep(0, 2), Sigma = s)) %>%
define(s = list(independent = diag(rep(1, 2)),
dependent = matrix(c(1, 0.5, 0.5, 1), nrow = 2))) %>%
generate(1)
## ----define_function----------------------------------------------------------
specify(y = ~ distribution(6)) %>%
define(distribution = list(normal = rnorm,
lognormal = rlnorm)) %>%
generate(1)
## ----generate_n_mu_2----------------------------------------------------------
specify(a = ~ rnorm(n, mu)) %>%
define(n = c(6, 12),
mu = c(0, 10)) %>%
generate(2)
## ----generate_filter----------------------------------------------------------
specify(a = ~ rnorm(n, mu)) %>%
define(n = c(6, 12),
mu = c(0, 10)) %>%
generate(2, n > mu)
## ----fit_initial--------------------------------------------------------------
specify(a = ~ rnorm(6),
b = ~ a + rnorm(6)) %>%
generate(1) %>%
fit(t_test = ~ t.test(a, b),
lm = ~ lm(b ~ a))
## ----fit_describe-------------------------------------------------------------
specify(a = ~ rnorm(6)) %>%
generate(1) %>%
fit(mean = ~ mean(a),
why_not = ~ a + 5)
## ----fit_explicit-------------------------------------------------------------
specify(a = ~ rnorm(6),
b = ~ a + rnorm(6)) %>%
generate(1) %>%
## .$ and data = . not actually required here
fit(t_test = ~ t.test(.$a, .$b),
lm = ~ lm(b ~ a, data = .))
## ----fit_reshape_1------------------------------------------------------------
wide_gen = specify(control = ~ rnorm(6, mean = 0),
intervention_1 = ~ rnorm(6, mean = 0.2),
intervention_2 = ~ rnorm(6, mean = 2)) %>%
generate(2)
wide_gen
## ----fit_reshape_success------------------------------------------------------
long_gen = wide_gen %>%
per_sim() %>%
pivot_longer(cols = everything(),
names_to = "group",
values_to = "response")
long_gen
## ----long_fit-----------------------------------------------------------------
long_fit = long_gen %>%
fit(aov = ~ aov(response ~ group),
lm = ~ lm(response ~ group))
long_fit
## ----tidy_fits_simple---------------------------------------------------------
specify(a = ~ rnorm(n),
b = ~ a + rnorm(n)) %>%
define(n = c(6, 12)) %>%
generate(2) %>%
fit(lm = ~ lm(b ~ a)) %>%
tidy_fits()
## ----tidy_fits_complex--------------------------------------------------------
specify(a = ~ rnorm(n),
b = ~ a + rnorm(n)) %>%
define(n = c(6, 12)) %>%
generate(2) %>%
fit(lm = ~ lm(b ~ a),
t_test = ~ t.test(a, b)) %>%
tidy_fits()
## ----tidy_fits_custom---------------------------------------------------------
specify(a = ~ rnorm(n),
b = ~ a + rnorm(n)) %>%
define(n = c(6, 12)) %>%
generate(2) %>%
fit(lm = ~ lm(b ~ a)) %>%
tidy_fits(conf.level = 0.99, conf.int = TRUE)
## ----glance_fits_simple-------------------------------------------------------
specify(a = ~ rnorm(n),
b = ~ a + rnorm(n)) %>%
define(n = c(6, 12)) %>%
generate(2) %>%
fit(lm = ~ lm(b ~ a)) %>%
glance_fits()
## ----apply_fits---------------------------------------------------------------
specify(a = ~ rnorm(n),
b = ~ a + rnorm(n)) %>%
define(n = c(6, 12)) %>%
generate(2) %>%
fit(lm = ~ lm(b ~ a)) %>%
apply_fits(~ max(cooks.distance(.)))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.