acf_sum | Helper Function for ARMA to WV Approximation |
AIC.fitsimts | Akaike's Information Criterion |
all_bootstrapper | Bootstrap for Everything! |
AR | Create an Autoregressive P [AR(P)] Process |
AR1 | Definition of an Autoregressive Process of Order 1 |
ar1_draw | Randomly guess starting parameters for AR1 |
ar1_to_gm | Transform AR1 to GM |
ar1_to_wv | AR(1) process to WV |
ARIMA | Create an Autoregressive Integrated Moving Average (ARIMA)... |
ARMA | Create an Autoregressive Moving Average (ARMA) Process |
ARMA11 | Definition of an ARMA(1,1) |
arma11_to_wv | ARMA(1,1) to WV |
ARMAacf_cpp | Compute Theoretical ACF for an ARMA Process |
arma_adapter | ARMA Adapter to ARMA to WV Process function |
arma_draws | Randomly guess starting parameters for ARMA |
ARMAtoMA_cpp | Converting an ARMA Process to an Infinite MA Process |
arma_to_wv | ARMA process to WV |
arma_to_wv_app | ARMA process to WV Approximation |
australia | Quarterly Increase in Stocks Non-Farm Total, Australia |
auto_corr | Empirical ACF and PACF |
auto_imu_cpp | Find the auto imu result |
batch_modwt_wvar_cpp | Computes the MO/DWT wavelet variance for multiple processes |
best_model | Select the Best Model |
bl14_filter | bl14 filter construction |
bl20_filter | bl20 filter construction |
B_matrix | B Matrix |
boot_pval_gof | Generate the Confidence Interval for GOF Bootstrapped |
bootstrap_gof_test | Compute the Bootstrapped GoF Test |
brick_wall | Removal of Boundary Wavelet Coefficients |
build_model_set | Build List of Unique Models |
calculate_psi_matrix | Calculate the Psi matrix |
cfilter | Time Series Convolution Filters |
check | Diagnostics on Fitted Time Series Model |
ci_eta3 | Generate eta3 confidence interval |
ci_eta3_robust | Generate eta3 robust confidence interval |
ci_wave_variance | Generate a Confidence intervval for a Univariate Time Series |
code_zero | Optim loses NaN |
comb | Combine math expressions |
compare_acf | Comparison of Classical and Robust Correlation Analysis... |
compute_cov_cpp | Computes the (MODWT) wavelet covariance matrix |
corr_analysis | Correlation Analysis Functions |
count_models | Count Models |
cov_bootstrapper | Bootstrap for Matrix V |
create_imu | Internal IMU Object Construction |
custom_legend | Custom legend function |
d16_filter | d16 filter construction |
d4_filter | d4 filter construction |
d6_filter | d6 filter construction |
d8_filter | d8 filter construction |
decomp_theoretical_wv | Each Models Process Decomposed to WV |
decomp_to_theo_wv | Decomposed WV to Single WV |
deriv_2nd_ar1 | Analytic second derivative matrix for AR(1) process |
deriv_2nd_arma11 | Analytic D matrix for ARMA(1,1) process |
deriv_2nd_dr | Analytic second derivative matrix for drift process |
deriv_2nd_ma1 | Analytic second derivative for MA(1) process |
deriv_ar1 | Analytic D matrix for AR(1) process |
deriv_arma11 | Analytic D matrix for ARMA(1,1) process |
derivative_first_matrix | Analytic D matrix of Processes |
deriv_dr | Analytic D matrix for Drift (DR) Process |
deriv_ma1 | Analytic D matrix for MA(1) process |
deriv_qn | Analytic D matrix for Quantization Noise (QN) Process |
deriv_rw | Analytic D matrix Random Walk (RW) Process |
deriv_wn | Analytic D Matrix for a Gaussian White Noise (WN) Process |
desc.to.ts.model | Create a ts.model from desc string |
dft_acf | Discrete Fourier Transformation for Autocovariance Function |
diag_boxpierce | Box-Pierce |
diag_ljungbox | Ljung-Box |
diag_plot | Diagnostic Plot of Residuals |
diag_portmanteau_ | Portmanteau Tests |
diff_cpp | Lagged Differences in Armadillo |
diff_inv | Discrete Intergral: Inverse Difference |
D_matrix | Analytic D matrix of Processes |
do_polyroot_arma | Root Finding C++ |
do_polyroot_cpp | Root Finding C++ |
dot-acf | Auto-Covariance and Correlation Functions |
DR | Create an Drift (DR) Process |
dr_to_wv | Drift to WV |
dwt_cpp | Discrete Wavelet Transform |
e_drift | Expected value DR |
estimate | Fit a Time Series Model to Data |
evaluate | Evalute a time series or a list of time series models |
fast_cov_cpp | Computes the (MODWT) wavelet covariance matrix using... |
FGN | Definition of a Fractional Gaussian Noise (FGN) Process |
field_to_matrix | Transform an Armadillo field<vec> to a matrix |
find_full_model | Find the Common Denominator of the Models |
fk14_filter | fk14 filter construction |
fk22_filter | fk22 filter construction |
fk4_filter | fk4 filter construction |
fk6_filter | fk6 filter construction |
fk8_filter | fk8 filter construction |
format_ci | Format the Confidence Interval for Estimates |
gen_ar1 | Generate an Autoregressive Order 1 ( AR(1) ) sequence |
gen_ar1blocks | Generate AR(1) Block Process |
gen_arima | Generate Autoregressive Order p, Integrated d, Moving Average... |
gen_arma | Generate Autoregressive Order p - Moving Average Order q... |
gen_arma11 | Generate an ARMA(1,1) sequence |
gen_bi | Generate Bias-Instability Process |
gen_dr | Generate a Drift Process |
gen_fgn | Generate a Fractional Gaussian noise given sigma^2 and H. |
gen_generic_sarima | Generate Generic Seasonal Autoregressive Order P - Moving... |
gen_gts | Simulate a simts TS object using a theoretical model |
gen_lts | Generate a Latent Time Series Object Based on a Model |
gen_lts_cpp | Generate Latent Time Series based on Model (Internal) |
gen_ma1 | Generate an Moving Average Order 1 (MA(1)) Process |
gen_matern | Generate a Matern Process given sigma^2, lambda and alpha. |
gen_mean | Generate a determinist vector returned by the matrix by... |
gen_model | Generate Time Series based on Model (Internal) |
gen_nswn | Generate Non-Stationary White Noise Process |
gen_powerlaw | Generate a Power Law Process given sigma^2 and d. |
gen_qn | Generate a Quantisation Noise (QN) or Rounding Error Sequence |
gen_rw | Generate a Random Walk without Drift |
gen_sarima | Generate Seasonal Autoregressive Order P - Moving Average... |
gen_sarma | Generate Seasonal Autoregressive Order P - Moving Average... |
gen_sin | Generate a Sinusoidal Process given alpha^2 and beta. |
gen_wn | Generate a Gaussian White Noise Process (WN(sigma^2)) |
getObjFun | Retrieve GMWM starting value from Yannick's objective... |
getObjFunStarting | Retrieve GMWM starting value from Yannick's objective... |
get_summary | Routing function for summary info |
GM | Create a Gauss-Markov (GM) Process |
gm_conv | GM Conversion |
gm_to_ar1 | Transform GM to AR1 |
gmwm | Generalized Method of Wavelet Moments (GMWM) |
gmwm_engine | Engine for obtaining the GMWM Estimator |
gmwm_imu | GMWM for (Robust) Inertial Measurement Units (IMUs) |
gmwm_master_cpp | Master Wrapper for the GMWM Estimator |
gmwm_param_bootstrapper | Bootstrap for Estimating Both Theta and Theta SD |
gmwm_sd_bootstrapper | Bootstrap for Standard Deviations of Theta Estimates |
gmwm_update_cpp | Update Wrapper for the GMWM Estimator |
gof_test | Compute the GOF Test |
gts | Create a simts TS object using time series data |
gts_time | Time of a gts object |
guess_initial | Randomly guess a starting parameter |
guess_initial_old | Randomly guess a starting parameter |
haar_filter | Haar filter construction |
has | Obtain the value of an object's properties |
hydro | Mean Monthly Precipitation, from 1907 to 1972 |
idf_arma | Indirect Inference for ARMA |
idf_arma_total | Indirect Inference for ARMA |
imu | Create an IMU Object |
imu_time | Pulls the IMU time from the IMU object |
invert_check | Check Invertibility Conditions |
is_func | Is simts Object |
is.whole | Integer Check |
jacobian_arma | Calculates the Jacobian for the ARMA process |
la16_filter | la16 filter construction |
la20_filter | la20 filter construction |
la8_filter | la8 filter construction |
lm_arma | MLR in Armadillo |
lm_dr | Linear Regression with Drift |
logit | Logit Function |
logit2 | Logit2 Function |
logit2_inv | Logit2 Inverse Function |
logit_inv | Logit Inverse Function |
lts | Generate a Latent Time Series Object from Data |
M | Definition of a Mean deterministic vector returned by the... |
m2_drift | Second moment DR |
MA | Create an Moving Average Q [MA(Q)] Process |
MA1 | Definition of an Moving Average Process of Order 1 |
ma1_to_wv | Moving Average Order 1 (MA(1)) to WV |
Ma_cpp | Ma function. |
Ma_cpp_vec | Ma vectorized function. |
make_frame | Default utility function for various plots titles |
MAPE | Median Absolute Prediction Error |
MAT | Definition of a Matérn Process |
mb16_filter | mb16 filter construction |
mb24_filter | mb24 filter construction |
mb4_filter | mb4 filter construction |
mb8_filter | mb8 filter construction |
mean_diff | Mean of the First Difference of the Data |
minroot | Obtain the smallest polynomial root |
Mod_cpp | Absolute Value or Modulus of a Complex Number. |
model_objdesc | Generate the ts model object description |
model_process_desc | Generate the ts model object's process desc |
model_score | Model Score |
model_theta | Generate the ts model object's theta vector |
modwt_cpp | Maximum Overlap Discrete Wavelet Transform |
modwt_wvar_cpp | Computes the (MODWT) wavelet variance |
np_boot_sd_med | Bootstrap standard error for the median |
num_rep | Replicate a Vector of Elements n times |
obj_extract | Extract Object |
optimism_bootstrapper | Bootstrap for Optimism |
opt_n_gof_bootstrapper | Bootstrap for Optimism and GoF |
order_AR1s | Order AR1s by size of phi. |
orderModel | Order the Model |
plot.gmwm | Plot the GMWM with the Wavelet Variance |
plot.gts | Plot simts Time Series Data |
plot.lts | Plot Latent Time Series Object |
plot.PACF | Plot Partial Auto-Covariance and Correlation Functions |
plot_pred | Plot Time Series Forecast Function |
plot.simtsACF | Plot Auto-Covariance and Correlation Functions |
PLP | Definition of a Power Law Process |
plus-.ts.model | Add ts.model objects together |
predict.fitsimts | Time Series Prediction |
predict.gmwm | Predict future points in the time series using the solution... |
print_data | Print simts Objects |
print.fitsimts | Print fitsimts object |
print.gmwm | Print gmwm object |
print.summary.gmwm | Print summary.gmwm object |
print.ts.model | Multiply a ts.model by constant |
pseudo_logit | Pseudo Logit Function |
pseudo_logit_inv | Pseudo Logit Inverse Function |
qmf | Quadrature Mirror Filter |
QN | Create an Quantisation Noise (QN) Process |
qn_to_wv | Quantisation Noise (QN) to WV |
quantile_cpp | Find Quantiles |
rank_models_cpp | Find the Rank Models result |
Rcpp_ARIMA | Hook into R's ARIMA function |
read_imu | Read an IMU Binary File into R |
read.imu | Read an IMU Binary File into R |
resid_plot | Plot the Distribution of (Standardized) Residuals |
rev_col_subset | Reverse Subset Column |
reverse_vec | Reverse Armadillo Vector |
rev_row_subset | Reverse Subset Row |
rfilter | Time Series Recursive Filters |
rgmwm | GMWM for Robust/Classical Comparison |
rtruncated_normal | Truncated Normal Distribution Sampling Algorithm |
RW | Create an Random Walk (RW) Process |
RW2dimension | Function to Compute Direction Random Walk Moves |
rw_to_wv | Random Walk to WV |
SARIMA | Create a Seasonal Autoregressive Integrated Moving Average... |
SARMA | Create a Seasonal Autoregressive Moving Average (SARMA)... |
sarma_calculate_spadding | Calculates Length of Seasonal Padding |
sarma_components | Determine parameter expansion based upon objdesc |
sarma_expand | Expand Parameters for an SARMA object |
sarma_expand_unguided | (Internal) Expand the SARMA Parameters |
sarma_params_construct | Efficient way to merge items together |
savingrt | Personal Saving Rate |
scales_cpp | Computes the MODWT scales |
select | Time Series Model Selection |
select_arima | Run Model Selection Criteria on ARIMA Models |
select_filter | Select the Wavelet Filter |
seq_cpp | Generate a sequence of values |
seq_len_cpp | Generate a sequence of values based on supplied number |
set_seed | Set the RNG Seed from within Rcpp |
simple_diag_plot | Basic Diagnostic Plot of Residuals |
simplified_print_SARIMA | Simplify and print SARIMA model |
simts-package | simts: Time Series Analysis Tools |
SIN | Definition of a Sinusoidal (SIN) Process |
sort_mat | Sort Matrix by Column |
sub-.imu | Subset an IMU Object |
sum_field_vec | Accumulation of Armadillo field<vec> |
summary.fitsimts | Summary of fitsimts object |
summary.gmwm | Summary of GMWM object |
theo_acf | Theoretical Autocorrelation (ACF) of an ARMA process |
theo_pacf | Theoretical Partial Autocorrelation (PACF) of an ARMA process |
theoretical_wv | Model Process to WV |
theta_ci | Generate the Confidence Interval for Theta Estimates |
times-.ts.model | Multiple a ts.model by constant |
transform_values | Transform Values for Optimization |
unitConversion | Convert Unit of Time Series Data |
untransform_values | Revert Transform Values for Display |
update.gmwm | Update (Robust) GMWM object for IMU or SSM |
update.lts | Update Object Attribute |
update_obj | Update the Attributes of Objects |
value | Obtain the value of an object's properties |
var_drift | Variance DR |
vector_to_set | Conversion function of Vector to Set |
w4_filter | w4 filter construction |
wave_variance | Generate a Wave Variance for a Univariate Time Series |
WN | Create an White Noise (WN) Process |
wn_to_wv | Gaussian White Noise to WV |
wvar_cpp | Computes the (MODWT) wavelet variance |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.