isop.scoring | R Documentation |
This function does the scoring in the isotonic probabilistic model (Scheiblechner, 1995, 2003, 2007). Person parameters are ordinally scaled but the ISOP model also allows specific objective (ordinal) comparisons for persons (Scheiblechner, 1995).
isop.scoring(dat,score.itemcat=NULL)
dat |
Data frame with dichotomous or polytomous item responses |
score.itemcat |
Optional data frame with scoring points for every item and every category (see Example 2). |
This function extracts the scoring rule of the ISOP model
(if score.itemcat !=NULL
) and calculates the
modified percentile score for every person. The score
s_{ik}
for item i
and category k
is calculated as
s_{ik}=\sum_{j=0}^{k-1} f_{ij} -
\sum_{j=k+1}^K f_{ij}=P( X_i < k )
- P( X_i > k )
where f_{ik}
is the relative frequency of item i
in category k
and K
is the maximum category.
The modified percentile score \rho_p
for subject p
(mpsc
in person
) is
defined by
\rho_p=\frac{1}{I} \sum_{i=1}^I
\sum_{j=0}^K s_{ik} \mathbf{1}( X_{pi}=k )
Note that for dichotomous items, the sum score is a
sufficient statistic for \rho_p
but this is
not the case for polytomous items.
The modified percentile score \rho_p
ranges between -1 and 1.
The modified item P-score \rho_i
(Scheiblechner, 2007, p. 52) is
defined by
\rho_i=\frac{1}{I-1} \cdot \sum_j \left[ P( X_j < X_i )
- P( X_j > X_i ) \right ]
A list with following entries:
person |
A data frame with person parameters. The modified
percentile score |
item |
Item statistics and scoring parameters.
The item P-scores |
p.itemcat |
Frequencies for every item category |
score.itemcat |
Scoring points for every item category |
distr.fct |
Empirical distribution function |
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281-304.
Scheiblechner, H. (2003). Nonparametric IRT: Scoring functions and ordinal parameter estimation of isotonic probabilistic models (ISOP). Technical Report, Philipps-Universitaet Marburg.
Scheiblechner, H. (2007). A unified nonparametric IRT model for d-dimensional psychological test data (d-ISOP). Psychometrika, 72, 43-67.
For fitting the ISOP and ADISOP model see
isop.dich
or fit.isop
.
#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data( data.read )
dat <- data.read
# Scoring according to the ISOP model
msc <- sirt::isop.scoring( dat )
# plot student scores
boxplot( msc$person$mpsc ~ msc$person$score )
#############################################################################
# EXAMPLE 2: Dataset students from CDM package | polytomous items
#############################################################################
library("CDM")
data( data.Students, package="CDM")
dat <- stats::na.omit(data.Students[, -c(1:2) ])
# Scoring according to the ISOP model
msc <- sirt::isop.scoring( dat )
# plot student scores
boxplot( msc$person$mpsc ~ msc$person$score )
# scoring with known scoring rule for activity items
items <- paste0( "act", 1:5 )
score.itemcat <- msc$score.itemcat
score.itemcat <- score.itemcat[ items, ]
msc2 <- sirt::isop.scoring( dat[,items], score.itemcat=score.itemcat )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.