View source: R/linking.robust.R
linking.robust | R Documentation |
This function implements a robust alternative of mean-mean linking which
employs trimmed means instead of means.
The linking constant is calculated for varying trimming parameters k
.
The treatment of differential item functioning as outliers and application of
robust statistics is discussed in Magis and De Boeck (2011, 2012).
linking.robust(itempars)
## S3 method for class 'linking.robust'
summary(object,...)
## S3 method for class 'linking.robust'
plot(x, ...)
itempars |
Data frame of item parameters (item intercepts). The first column contains the item label, the 2nd and 3rd columns item parameters of two studies. |
object |
Object of class |
x |
Object of class |
... |
Further arguments to be passed |
A list with following entries
ind.kopt |
Index for optimal scale parameter |
kopt |
Optimal scale parameter |
meanpars.kopt |
Linking constant for optimal scale parameter |
se.kopt |
Standard error for linking constant obtained with optimal scale parameter |
meanpars |
Linking constant dependent on the scale parameter |
se |
Standard error of the linking constant dependent on the scale parameter |
sd |
DIF standard deviation (non-robust estimate) |
mad |
DIF standard deviation (robust estimate using the MAD measure) |
pars |
Original item parameters |
k.robust |
Used vector of scale parameters |
I |
Number of items |
itempars |
Used data frame of item parameters |
Magis, D., & De Boeck, P. (2011). Identification of differential item functioning in multiple-group settings: A multivariate outlier detection approach. Multivariate Behavioral Research, 46(5), 733-755. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00273171.2011.606757")}
Magis, D., & De Boeck, P. (2012). A robust outlier approach to prevent type I error inflation in differential item functioning. Educational and Psychological Measurement, 72(2), 291-311. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0013164411416975")}
Other functions for linking: linking.haberman
,
equating.rasch
See also the plink package.
#############################################################################
# EXAMPLE 1: Linking data.si03
#############################################################################
data(data.si03)
res1 <- sirt::linking.robust( itempars=data.si03 )
summary(res1)
## Number of items=27
## Optimal trimming parameter k=8 | non-robust parameter k=0
## Linking constant=-0.0345 | non-robust estimate=-0.056
## Standard error=0.0186 | non-robust estimate=0.027
## DIF SD: MAD=0.0771 (robust) | SD=0.1405 (non-robust)
plot(res1)
## Not run:
#############################################################################
# EXAMPLE 2: Linking PISA item parameters data.pisaPars
#############################################################################
data(data.pisaPars)
# Linking with items
res2 <- sirt::linking.robust( data.pisaPars[, c(1,3,4)] )
summary(res2)
## Optimal trimming parameter k=0 | non-robust parameter k=0
## Linking constant=-0.0883 | non-robust estimate=-0.0883
## Standard error=0.0297 | non-robust estimate=0.0297
## DIF SD: MAD=0.1824 (robust) | SD=0.1487 (non-robust)
## -> no trimming is necessary for reducing the standard error
plot(res2)
#############################################################################
# EXAMPLE 3: Linking with simulated item parameters containing outliers
#############################################################################
# simulate some parameters
I <- 38
set.seed(18785)
itempars <- data.frame("item"=paste0("I",1:I) )
itempars$study1 <- stats::rnorm( I, mean=.3, sd=1.4 )
# simulate DIF effects plus some outliers
bdif <- stats::rnorm(I,mean=.4,sd=.09)+( stats::runif(I)>.9 )* rep( 1*c(-1,1)+.4, each=I/2 )
itempars$study2 <- itempars$study1 + bdif
# robust linking
res <- sirt::linking.robust( itempars )
summary(res)
## Number of items=38
## Optimal trimming parameter k=12 | non-robust parameter k=0
## Linking constant=-0.4285 | non-robust estimate=-0.5727
## Standard error=0.0218 | non-robust estimate=0.0913
## DIF SD: MAD=0.1186 (robust) | SD=0.5628 (non-robust)
## -> substantial differences of estimated linking constants in this case of
## deviations from normality of item parameters
plot(res)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.