View source: R/rasch.pairwise.R
rasch.pairwise | R Documentation |
This function estimates the Rasch model with a minimum chi square estimation method (cited in Fischer, 2007, p. 544) which is a pairwise conditional likelihood estimation approach.
rasch.pairwise(dat, weights=NULL, conv=1e-04, maxiter=3000, progress=TRUE,
b.init=NULL, zerosum=FALSE, power=1, direct_optim=TRUE)
## S3 method for class 'rasch.pairwise'
summary(object, digits=3, file=NULL, ...)
dat |
An |
weights |
Optional vector of sampling weights |
conv |
Convergence criterion |
maxiter |
Maximum number of iterations |
progress |
Display iteration progress? |
b.init |
An optional vector of length |
zerosum |
Optional logical indicating whether item difficulties should be centered in each iteration. The default is that no centering is conducted. |
power |
Power used for computing pairwise response probabilities like in row averaging approach |
direct_optim |
Logical indicating whether least squares criterion
funcion should be minimized with |
object |
Object of class |
digits |
Number of digits after decimal for rounding |
file |
Optional file name for summary output |
... |
Further arguments to be passed |
An object of class rasch.pairwise
with following entries
b |
Item difficulties |
eps |
Exponentiated item difficulties, i.e. |
iter |
Number of iterations |
conv |
Convergence criterion |
dat |
Original data frame |
freq.ij |
Frequency table of all item pairs |
item |
Summary table of item parameters |
Fischer, G. H. (2007). Rasch models. In C. R. Rao and S. Sinharay (Eds.), Handbook of Statistics, Vol. 26 (pp. 515-585). Amsterdam: Elsevier.
See summary.rasch.pairwise
for a summary.
A slightly different implementation of this conditional pairwise method
is implemented in
rasch.pairwise.itemcluster
.
Pairwise marginal likelihood estimation (also labeled as pseudolikelihood
estimation) can be conducted with rasch.pml3
.
#############################################################################
# EXAMPLE 1: Reading data set | pairwise estimation Rasch model
#############################################################################
data(data.read)
dat <- data.read
#*** Model 1: no constraint on item difficulties
mod1 <- sirt::rasch.pairwise(dat)
summary(mod1)
#*** Model 2: sum constraint on item difficulties
mod2 <- sirt::rasch.pairwise(dat, zerosum=TRUE)
summary(mod2)
## Not run:
#** obtain standard errors by bootstrap
mod2$item$b # extract item difficulties
# Bootstrap of item difficulties
boot_pw <- function(data, indices ){
dd <- data[ indices, ] # bootstrap of indices
mod <- sirt::rasch.pairwise( dat=dd, zerosum=TRUE, progress=FALSE)
return(mod$item$b)
}
set.seed(986)
library(boot)
bmod2 <- boot::boot(data=dat, statistic=boot_pw, R=999 )
print(bmod2)
summary(bmod2)
# quantiles for bootstrap sample (and confidence interval)
apply(bmod2$t, 2, stats::quantile, probs=c(.025, .5, .975) )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.