xxirt | R Documentation |
Estimates a user defined item response model. Both, item response functions
and latent trait distributions can be specified by the user (see Details).
By default, the EM algorithm is used for estimation. The number of maximum
EM iterations can be defined with the argument maxit
. The xxirt
function also allows Newton-Raphson optimization by specifying values of maximum
number of iterations in maxit_nr
larger than zero. Typically, a small initial
number of EM iterations should be chosen to obtain reasonable starting values.
xxirt(dat, Theta=NULL, itemtype=NULL, customItems=NULL, partable=NULL,
customTheta=NULL, group=NULL, weights=NULL, globconv=1e-06, conv=1e-04,
maxit=1000, mstep_iter=4, mstep_reltol=1e-06, maxit_nr=0, optimizer_nr="nlminb",
control_nr=list(trace=1), h=1E-4, use_grad=TRUE, verbose=TRUE,
penalty_fun_item=NULL, np_fun_item=NULL, verbose_index=NULL,
cv_kfold=0, cv_maxit=10)
## S3 method for class 'xxirt'
summary(object, digits=3, file=NULL, ...)
## S3 method for class 'xxirt'
print(x, ...)
## S3 method for class 'xxirt'
anova(object,...)
## S3 method for class 'xxirt'
coef(object,...)
## S3 method for class 'xxirt'
logLik(object,...)
## S3 method for class 'xxirt'
vcov(object,...)
## S3 method for class 'xxirt'
confint(object, parm, level=.95, ... )
## S3 method for class 'xxirt'
IRT.expectedCounts(object,...)
## S3 method for class 'xxirt'
IRT.factor.scores(object, type="EAP", ...)
## S3 method for class 'xxirt'
IRT.irfprob(object,...)
## S3 method for class 'xxirt'
IRT.likelihood(object,...)
## S3 method for class 'xxirt'
IRT.posterior(object,...)
## S3 method for class 'xxirt'
IRT.modelfit(object,...)
## S3 method for class 'IRT.modelfit.xxirt'
summary(object,...)
## S3 method for class 'xxirt'
IRT.se(object,...)
# computes Hessian matrix
xxirt_hessian(object, h=1e-4, use_shortcut=TRUE)
dat |
Data frame with item responses |
Theta |
Matrix with |
itemtype |
Vector of item types |
customItems |
List containing types of item response functions created by
|
partable |
Item parameter table which is initially created by
|
customTheta |
User defined |
group |
Optional vector of group indicators |
weights |
Optional vector of person weights |
globconv |
Convergence criterion for relative change in deviance |
conv |
Convergence criterion for absolute change in parameters |
maxit |
Maximum number of iterations in the EM algorithm |
mstep_iter |
Maximum number of iterations in M-step |
mstep_reltol |
Convergence criterion in M-step |
maxit_nr |
Number of Newton-Raphson iterations after EM algorithm |
optimizer_nr |
Type of optimizer for Newton-Raphson optimization.
Alternatives are |
control_nr |
Argument |
h |
Numerical differentiation parameter |
use_grad |
Logical indicating whether the gradient should be supplied
to |
verbose |
Logical indicating whether iteration progress should be displayed |
penalty_fun_item |
Optional penalty function used in regularized
estimation. Used as a function of |
np_fun_item |
Function that counts the number of item parameters in regularized
estimation. Used as a function of |
object |
Object of class |
digits |
Number of digits to be rounded |
file |
Optional file name to which |
parm |
Optional vector of parameters |
level |
Confidence level |
verbose_index |
Logical indicating whether item index should be printed in estimation output |
cv_kfold |
Number of k folds in cross validation. The default is 0 (no cross-validation) |
cv_maxit |
Maximum number of iterations for each cross-validation sample |
x |
Object of class |
type |
Type of person parameter estimate. Currently, only
|
use_shortcut |
Logical indicating whether a shortcut in the computation should be utilized |
... |
Further arguments to be passed |
Item response functions can be specified as functions of unknown parameters
\bold{\delta}_i
such that
P(X_{i}=x | \bold{\theta})=f_i( x | \bold{\theta} ; \bold{\delta}_i )
The item response model is estimated under the assumption of
local stochastic independence of items. Equality constraints of
item parameters \bold{\delta}_i
among items are allowed.
The probability distribution P(\bold{\theta})
are specified as functions
of an unknown parameter vector \bold{\gamma}
.
A penalty function for item parameters can be specified in
penalty_fun_item
. The penalty function should be differentiable and
a non-differentiable function (e.g., the absolute value function) should
be approximated by a differentiable function.
List with following entries
partable |
Item parameter table |
par_items |
Vector with estimated item parameters |
par_items_summary |
Data frame with item parameters |
par_items_bounds |
Data frame with summary on bounds of estimated item parameters |
par_Theta |
Vector with estimated parameters of theta distribution |
Theta |
Matrix with |
probs_items |
Item response functions |
probs_Theta |
Theta distribution |
deviance |
Deviance |
loglik |
Log likelihood value |
ic |
Information criteria |
item_list |
List with item functions |
customItems |
Used customized item response functions |
customTheta |
Used customized theta distribution |
cv_loglike |
Cross-validated log-likelihood value (if |
p.xi.aj |
Individual likelihood |
p.aj.xi |
Individual posterior |
ll_case |
Case-wise log-likelihood values |
n.ik |
Array of expected counts |
EAP |
EAP person parameter estimates |
dat |
Used dataset with item responses |
dat_resp |
Dataset with response indicators |
weights |
Vector of person weights |
G |
Number of groups |
group |
Integer vector of group indicators |
group_orig |
Vector of original group_identifiers |
ncat |
Number of categories per item |
converged |
Logical whether model has converged |
iter |
Number of iterations needed |
See the mirt::createItem
and
mirt::mirt
functions in the mirt
package for similar functionality.
## Not run:
#############################################################################
## EXAMPLE 1: Unidimensional item response functions
#############################################################################
data(data.read)
dat <- data.read
#------ Definition of item response functions
#*** IRF 2PL
P_2PL <- function( par, Theta, ncat){
a <- par[1]
b <- par[2]
TP <- nrow(Theta)
P <- matrix( NA, nrow=TP, ncol=ncat)
P[,1] <- 1
for (cc in 2:ncat){
P[,cc] <- exp( (cc-1) * a * Theta[,1] - b )
}
P <- P / rowSums(P)
return(P)
}
#*** IRF 1PL
P_1PL <- function( par, Theta, ncat){
b <- par[1]
TP <- nrow(Theta)
P <- matrix( NA, nrow=TP, ncol=ncat)
P[,1] <- 1
for (cc in 2:ncat){
P[,cc] <- exp( (cc-1) * Theta[,1] - b )
}
P <- P / rowSums(P)
return(P)
}
#** created item classes of 1PL and 2PL models
par <- c( "a"=1, "b"=0 )
# define some slightly informative prior of 2PL
item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE),
P=P_2PL, prior=c(a="dlnorm"), prior_par1=c( a=0 ),
prior_par2=c(a=5) )
item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par[2], est=c(TRUE),
P=P_1PL )
customItems <- list( item_1PL, item_2PL )
#---- definition theta distribution
#** theta grid
Theta <- matrix( seq(-6,6,length=21), ncol=1 )
#** theta distribution
P_Theta1 <- function( par, Theta, G){
mu <- par[1]
sigma <- max( par[2], .01 )
TP <- nrow(Theta)
pi_Theta <- matrix( 0, nrow=TP, ncol=G)
pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma )
pi1 <- pi1 / sum(pi1)
pi_Theta[,1] <- pi1
return(pi_Theta)
}
#** create distribution class
par_Theta <- c( "mu"=0, "sigma"=1 )
customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE),
P=P_Theta1 )
#****************************************************************************
#******* Model 1: Rasch model
#-- create parameter table
itemtype <- rep( "1PL", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype,
customItems=customItems )
# estimate model
mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
customItems=customItems, customTheta=customTheta)
summary(mod1)
# estimate Rasch model by providing starting values
partable1 <- sirt::xxirt_modifyParTable( partable, parname="b",
value=- stats::qlogis( colMeans(dat) ) )
# estimate model again
mod1b <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable1,
customItems=customItems, customTheta=customTheta )
summary(mod1b)
# extract coefficients, covariance matrix and standard errors
coef(mod1b)
vcov(mod1b)
IRT.se(mod1b)
#** start with EM and finalize with Newton-Raphson algorithm
mod1c <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
customItems=customItems, customTheta=customTheta,
maxit=20, maxit_nr=300)
summary(mod1c)
#****************************************************************************
#******* Model 2: 2PL Model with three groups of item discriminations
#-- create parameter table
itemtype <- rep( "2PL", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems)
# modify parameter table: set constraints for item groups A, B and C
partable1 <- sirt::xxirt_modifyParTable(partable, item=paste0("A",1:4),
parname="a", parindex=111)
partable1 <- sirt::xxirt_modifyParTable(partable1, item=paste0("B",1:4),
parname="a", parindex=112)
partable1 <- sirt::xxirt_modifyParTable(partable1, item=paste0("C",1:4),
parname="a", parindex=113)
# delete prior distributions
partable1 <- sirt::xxirt_modifyParTable(partable1, parname="a", prior=NA)
#-- fix sigma to 1
customTheta1 <- customTheta
customTheta1$est <- c("mu"=FALSE,"sigma"=FALSE )
# estimate model
mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable1,
customItems=customItems, customTheta=customTheta1 )
summary(mod2)
#****************************************************************************
#******* Model 3: Cloglog link function
#*** IRF cloglog
P_1N <- function( par, Theta, ncat){
b <- par
TP <- nrow(Theta)
P <- matrix( NA, nrow=TP, ncol=ncat)
P[,2] <- 1 - exp( - exp( Theta - b ) )
P[,1] <- 1 - P[,2]
return(P)
}
par <- c("b"=0)
item_1N <- sirt::xxirt_createDiscItem( name="1N", par=par, est=c(TRUE),
P=P_1N )
customItems <- list( item_1N )
itemtype <- rep( "1N", I )
partable <- sirt::xxirt_createParTable( dat[,items], itemtype=itemtype,
customItems=customItems )
partable <- sirt::xxirt_modifyParTable( partable=partable, parname="b",
value=- stats::qnorm( colMeans(dat[,items] )) )
#*** estimate model
mod3 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems,
customTheta=customTheta )
summary(mod3)
IRT.compareModels(mod1,mod3)
#****************************************************************************
#******* Model 4: Latent class model
K <- 3 # number of classes
Theta <- diag(K)
#*** Theta distribution
P_Theta1 <- function( par, Theta, G ){
logitprobs <- par[1:(K-1)]
l1 <- exp( c( logitprobs, 0 ) )
probs <- matrix( l1/sum(l1), ncol=1)
return(probs)
}
par_Theta <- stats::qlogis( rep( 1/K, K-1 ) )
names(par_Theta) <- paste0("pi",1:(K-1) )
customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta,
est=rep(TRUE,K-1), P=P_Theta1)
#*** IRF latent class
P_lc <- function( par, Theta, ncat){
b <- par
TP <- nrow(Theta)
P <- matrix( NA, nrow=TP, ncol=ncat)
P[,1] <- 1
for (cc in 2:ncat){
P[,cc] <- exp( Theta %*% b )
}
P <- P / rowSums(P)
return(P)
}
par <- seq( -1.5, 1.5, length=K )
names(par) <- paste0("b",1:K)
item_lc <- sirt::xxirt_createDiscItem( name="LC", par=par,
est=rep(TRUE,K), P=P_lc )
customItems <- list( item_lc )
# create parameter table
itemtype <- rep( "LC", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems)
partable
#*** estimate model
mod4 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems,
customTheta=customTheta)
summary(mod4)
# class probabilities
mod4$probs_Theta
# item response functions
imod4 <- IRT.irfprob( mod5 )
round( imod4[,2,], 3 )
#****************************************************************************
#******* Model 5: Ordered latent class model
K <- 3 # number of classes
Theta <- diag(K)
Theta <- apply( Theta, 1, cumsum )
#*** Theta distribution
P_Theta1 <- function( par, Theta, G ){
logitprobs <- par[1:(K-1)]
l1 <- exp( c( logitprobs, 0 ) )
probs <- matrix( l1/sum(l1), ncol=1)
return(probs)
}
par_Theta <- stats::qlogis( rep( 1/K, K-1 ) )
names(par_Theta) <- paste0("pi",1:(K-1) )
customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta,
est=rep(TRUE,K-1), P=P_Theta1 )
#*** IRF ordered latent class
P_olc <- function( par, Theta, ncat){
b <- par
TP <- nrow(Theta)
P <- matrix( NA, nrow=TP, ncol=ncat)
P[,1] <- 1
for (cc in 2:ncat){
P[,cc] <- exp( Theta %*% b )
}
P <- P / rowSums(P)
return(P)
}
par <- c( -1, rep( .5,, length=K-1 ) )
names(par) <- paste0("b",1:K)
item_olc <- sirt::xxirt_createDiscItem( name="OLC", par=par, est=rep(TRUE,K),
P=P_olc, lower=c( -Inf, 0, 0 ) )
customItems <- list( item_olc )
itemtype <- rep( "OLC", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype, customItems=customItems)
partable
#*** estimate model
mod5 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable, customItems=customItems,
customTheta=customTheta )
summary(mod5)
# estimated item response functions
imod5 <- IRT.irfprob( mod5 )
round( imod5[,2,], 3 )
#############################################################################
## EXAMPLE 2: Multiple group models with xxirt
#############################################################################
data(data.math)
dat <- data.math$data
items <- grep( "M[A-Z]", colnames(dat), value=TRUE )
I <- length(items)
Theta <- matrix( seq(-8,8,len=31), ncol=1 )
#****************************************************************************
#******* Model 1: Rasch model, single group
#*** Theta distribution
P_Theta1 <- function( par, Theta, G ){
mu <- par[1]
sigma <- max( par[2], .01 )
p1 <- stats::dnorm( Theta[,1], mean=mu, sd=sigma)
p1 <- p1 / sum(p1)
probs <- matrix( p1, ncol=1)
return(probs)
}
par_Theta <- c(0,1)
names(par_Theta) <- c("mu","sigma")
customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta,
est=c(FALSE,TRUE), P=P_Theta1 )
customTheta
#*** IRF 1PL logit
P_1PL <- function( par, Theta, ncat){
b <- par
TP <- nrow(Theta)
P <- matrix( NA, nrow=TP, ncol=ncat)
P[,2] <- plogis( Theta - b )
P[,1] <- 1 - P[,2]
return(P)
}
par <- c("b"=0)
item_1PL <- sirt::xxirt_createDiscItem( name="1PL", par=par, est=c(TRUE), P=P_1PL)
customItems <- list( item_1PL )
itemtype <- rep( "1PL", I )
partable <- sirt::xxirt_createParTable( dat[,items], itemtype=itemtype,
customItems=customItems )
partable <- sirt::xxirt_modifyParTable( partable=partable, parname="b",
value=- stats::qlogis( colMeans(dat[,items] )) )
#*** estimate model
mod1 <- sirt::xxirt( dat=dat[,items], Theta=Theta, partable=partable,
customItems=customItems, customTheta=customTheta )
summary(mod1)
#****************************************************************************
#******* Model 2: Rasch model, multiple groups
#*** Theta distribution
P_Theta2 <- function( par, Theta, G ){
mu1 <- par[1]
mu2 <- par[2]
sigma1 <- max( par[3], .01 )
sigma2 <- max( par[4], .01 )
TP <- nrow(Theta)
probs <- matrix( NA, nrow=TP, ncol=G)
p1 <- stats::dnorm( Theta[,1], mean=mu1, sd=sigma1)
probs[,1] <- p1 / sum(p1)
p1 <- stats::dnorm( Theta[,1], mean=mu2, sd=sigma2)
probs[,2] <- p1 / sum(p1)
return(probs)
}
par_Theta <- c(0,0,1,1)
names(par_Theta) <- c("mu1","mu2","sigma1","sigma2")
customTheta2 <- sirt::xxirt_createThetaDistribution( par=par_Theta,
est=c(FALSE,TRUE,TRUE,TRUE), P=P_Theta2 )
print(customTheta2)
#*** estimate model
mod2 <- sirt::xxirt( dat=dat[,items], group=dat$female, Theta=Theta, partable=partable,
customItems=customItems, customTheta=customTheta2, maxit=40)
summary(mod2)
IRT.compareModels(mod1, mod2)
#*** compare results with TAM package
library(TAM)
mod2b <- TAM::tam.mml( resp=dat[,items], group=dat$female )
summary(mod2b)
IRT.compareModels(mod1, mod2, mod2b)
#############################################################################
## EXAMPLE 3: Regularized 2PL model
#############################################################################
data(data.read, package="sirt")
dat <- data.read
#------ Definition of item response functions
#*** IRF 2PL
P_2PL <- function( par, Theta, ncat){
a <- par[1]
b <- par[2]
TP <- nrow(Theta)
P <- matrix( NA, nrow=TP, ncol=ncat)
P[,1] <- 1
for (cc in 2:ncat){
P[,cc] <- exp( (cc-1) * a * Theta[,1] - b )
}
P <- P / rowSums(P)
return(P)
}
#** created item classes of 1PL and 2PL models
par <- c( "a"=1, "b"=0 )
# define some slightly informative prior of 2PL
item_2PL <- sirt::xxirt_createDiscItem( name="2PL", par=par, est=c(TRUE,TRUE),
P=P_2PL, prior=c(a="dlnorm"), prior_par1=c( a=0 ),
prior_par2=c(a=5) )
customItems <- list( item_2PL )
#---- definition theta distribution
#** theta grid
Theta <- matrix( seq(-6,6,length=21), ncol=1 )
#** theta distribution
P_Theta1 <- function( par, Theta, G){
mu <- par[1]
sigma <- max( par[2], .01 )
TP <- nrow(Theta)
pi_Theta <- matrix( 0, nrow=TP, ncol=G)
pi1 <- dnorm( Theta[,1], mean=mu, sd=sigma )
pi1 <- pi1 / sum(pi1)
pi_Theta[,1] <- pi1
return(pi_Theta)
}
#** create distribution class
par_Theta <- c( "mu"=0, "sigma"=1 )
customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,FALSE),
P=P_Theta1 )
#****************************************************************************
#******* Model 1: 2PL model
itemtype <- rep( "2PL", 12 )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype,
customItems=customItems )
mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
customItems=customItems, customTheta=customTheta)
summary(mod1)
#****************************************************************************
#******* Model 2: Regularized 2PL model with regularization on item loadings
# define regularized estimation of item loadings
parindex <- partable[ partable$parname=="a","parindex"]
#** penalty is defined by -N*lambda*sum_i (a_i-1)^2
N <- nrow(dat)
lambda <- .02
penalty_fun_item <- function(x)
{
val <- N*lambda*sum( ( x[parindex]-1)^2)
return(val)
}
# estimate standard deviation
customTheta1 <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(FALSE,TRUE),
P=P_Theta1 )
mod2 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
customItems=customItems, customTheta=customTheta1,
penalty_fun_item=penalty_fun_item)
summary(mod2)
#############################################################################
## EXAMPLE 4: 2PL mixture model
#############################################################################
#*** simulate data
set.seed(123)
N <- 4000 # number of persons
I <- 15 # number of items
prop <- .25 # mixture proportion for second class
# discriminations and difficulties in first class
a1 <- rep(1,I)
b1 <- seq(-2,2,len=I)
# distribution in second class
mu2 <- 1
sigma2 <- 1.2
# compute parameters with constraint N(0,1) in second class
# a*(sigma*theta+mu-b)=a*sigma*(theta-(b-mu)/sigma)
#=> a2=a*sigma and b2=(b-mu)/sigma
a2 <- a1
a2[c(2,4,6,8)] <- 0.2 # some items with different discriminations
a2 <- a2*sigma2
b2 <- b1
b2[1:5] <- 1 # first 5 item with different difficulties
b2 <- (b2-mu2)/sigma2
dat1 <- sirt::sim.raschtype(theta=stats::rnorm(N*(1-prop)), b=b1, fixed.a=a1)
dat2 <- sirt::sim.raschtype(theta=stats::rnorm(N*prop), b=b2, fixed.a=a2)
dat <- rbind(dat1, dat2)
#**** model specification
#*** define theta distribution
TP <- 21
theta <- seq(-6,6,length=TP)
# stack theta vectors below each others=> 2 latent classes
Theta <- matrix( c(theta, theta ), ncol=1 )
# distribution of theta (i.e., N(0,1))
w_theta <- dnorm(theta)
w_theta <- w_theta / sum(w_theta)
P_Theta1 <- function( par, Theta, G){
p2_logis <- par[1]
p2 <- stats::plogis( p2_logis )
p1 <- 1-p2
pi_Theta <- c( p1*w_theta, p2*w_theta)
pi_Theta <- matrix(pi_Theta, ncol=1)
return(pi_Theta)
}
par_Theta <- c( p2_logis=qlogis(.25))
customTheta <- sirt::xxirt_createThetaDistribution( par=par_Theta, est=c(TRUE),
P=P_Theta1)
# IRF for 2-class mixture 2PL model
par <- c(a1=1, a2=1, b1=0, b2=.5)
P_2PLmix <- function( par, Theta, ncat)
{
a1 <- par[1]
a2 <- par[2]
b1 <- par[3]
b2 <- par[4]
P <- matrix( NA, nrow=2*TP, ncol=ncat)
TP <- nrow(Theta)/2
P1 <- stats::plogis( a1*(Theta[1:TP,1]-b1) )
P2 <- stats::plogis( a2*(Theta[TP+1:(2*TP),1]-b2) )
P[,2] <- c(P1, P2)
P[,1] <- 1-P[,2]
return(P)
}
# define some slightly informative prior of 2PL
item_2PLmix <- sirt::xxirt_createDiscItem( name="2PLmix", par=par,
est=c(TRUE,TRUE,TRUE,TRUE), P=P_2PLmix )
customItems <- list( item_2PLmix )
#****************************************************************************
#******* Model 1: 2PL mixture model
itemtype <- rep( "2PLmix", I )
partable <- sirt::xxirt_createParTable( dat, itemtype=itemtype,
customItems=customItems )
mod1 <- sirt::xxirt( dat=dat, Theta=Theta, partable=partable,
customItems=customItems, customTheta=customTheta)
summary(mod1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.