Nothing
#' @title Forecasting of multiple models over multiple time series
#'
#' @description allows forecasting on multiple time series from multiple fitted models.
#'
#' @details this function takes the 'table_time' object generated with the `modeltime_multifit()` function,
#' the `modeltime_forecast()` from the package 'modeltime' is applied to each model for each series.
#'
#' @param models_table 'table_time' tibble generated with the `modeltime_multifit()` function.
#' @param .h prediction horizon of the `modeltime_forecast()` function.
#' @param .prop time series split partition ratio. If "h" is specified, this function predicts on the testing partition.
#'
#' @return 'models_table' tibble with a new column called 'nested_forecast' where the predictions are stored.
#' @export
#'
#' @examples
#' # Data
#' data_serie <- sknifedatar::table_time
#'
#' # Forecast
#' sknifedatar::modeltime_multiforecast(data_serie$table_time, .prop=0.8)
#'
modeltime_multiforecast <- function(models_table,
.h = NULL,
.prop = NULL) {
models_table %>%
dplyr::mutate(
nested_forecast = purrr::pmap(list(.data$calibration, .data$nested_column),
function(x = .data$calibration, y = .data$nested_column){
x %>% modeltime::modeltime_forecast(
new_data = if (is.null(.h)) {
rsample::initial_time_split(y, prop = .prop) %>% rsample::testing()
} else {NULL},
h = .h,
actual_data = y) %>%
dplyr::mutate(
.model_details = .data$.model_desc,
.model_desc = gsub("[[:punct:][:digit:][:cntrl:]]","", .data$.model_desc)
)
}
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.