Nothing
# Function used in unit tests verifying the correct number of individuals after
# various demographic changes
run_sim <- function(pop, direction, simulation_length = NULL, method = "batch", verbose = FALSE) {
model_dir <- tempdir()
model <- compile_model(
populations = list(pop), generation_time = 1,
resolution = 10e3, competition = 130e3, mating = 100e3, dispersal = 70e3,
path = model_dir, direction = direction, simulation_length = simulation_length, overwrite = TRUE, force = TRUE
)
locations_file <- tempfile(fileext = ".gz")
slim(model, sequence_length = 1, recombination_rate = 0,,
method = method, verbose = verbose, locations = locations_file)
df <- suppressMessages(readr::read_tsv(locations_file, progress = FALSE)) %>%
dplyr::mutate(time = convert_slim_time(gen, model)) %>%
dplyr::group_by(gen, time, pop) %>%
dplyr::summarise(N = dplyr::n(), .groups = "keep")
if (direction == "forward")
df <- dplyr::arrange(df, time)
else
df <- dplyr::arrange(df, -time)
df
}
# Function used to cross-test the consistency of msprime and SLiM simulations
# executed by the two slendr backends on the same slendr model configuration
run_slim_msprime <- function(forward_model, backward_model,
forward_samples, backward_samples,
seq_len, rec_rate, seed, verbose) {
ts_slim_forward <- tempfile()
ts_msprime_forward <- tempfile()
slim(forward_model, output = ts_slim_forward, sequence_length = seq_len, recombination_rate = rec_rate,
samples = forward_samples, random_seed = seed, verbose = verbose)
suppressWarnings({
msprime(forward_model, output = ts_msprime_forward, sequence_length = seq_len, recombination_rate = rec_rate,
samples = forward_samples, random_seed = seed, verbose = verbose)
})
ts_slim_backward <- tempfile()
ts_msprime_backward <- tempfile()
slim(backward_model, output = ts_slim_backward, sequence_length = seq_len, recombination_rate = rec_rate,
samples = backward_samples, random_seed = seed, verbose = verbose)
suppressWarnings({
msprime(backward_model, output = ts_msprime_backward, sequence_length = seq_len, recombination_rate = rec_rate,
samples = backward_samples, random_seed = seed, verbose = verbose)
})
list(
"slim_forward" = ts_slim_forward,
"msprime_forward" = ts_msprime_forward,
"slim_backward" = ts_slim_backward,
"msprime_backward" = ts_msprime_backward
)
}
load_tree_sequence <- function(backend, direction, ts_list, model, N, rec_rate, mut_rate, seed) {
ts_file <- ts_list[[paste(tolower(backend), direction, sep = "_")]]
if (backend == tolower("SLiM"))
ts_load(model = model, file = ts_file) %>%
ts_recapitate(Ne = N, recombination_rate = rec_rate, random_seed = seed) %>%
ts_simplify() %>%
ts_mutate(mutation_rate = mut_rate, random_seed = seed)
else
ts_load(model = model, file = ts_file) %>%
ts_mutate(mutation_rate = mut_rate, random_seed = seed)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.