| affineTransSECdistr | R Documentation |
Given a multivariate random variable Y with skew-elliptical
(SEC) distribution, compute the distribution
of a (possibly multivariate) marginal or the distribution
of an affine transformation a + A^{\top}Y.
affineTransSECdistr(object, a, A, name, compNames, drop=TRUE)
marginalSECdistr(object, comp, name, drop=TRUE)
object |
an object of class |
a |
a numeric vector with the length |
A |
a full-rank matrix with |
name |
an optional character string representing the name of the outcome distribution; if missing, one such string is constructed. |
compNames |
an optional vector of length |
drop |
a logical flag (default value: |
comp |
a vector formed by a subset of |
If object defines the distribution of a SEC random
variable Y, affineTransSECdistr computes the
distribution of a+A'Y and marginalSECdistr computes the marginal
distribution of the comp components. In both cases the returned
object is of class SECdistrMv, except when drop=TRUE
operates, leading to an object of class SECdistrUv.
These functions implement formulae given in Sections 5.1.4, 5.1.6 and 6.2.2 of the reference below.
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monographs series.
makeSECdistr, extractSECdistr,
SECdistrMv-class
dp3 <- list(xi=1:3, Omega=toeplitz(1/(1:3)), alpha=c(3,-1,2), nu=5)
st3 <- makeSECdistr(dp3, family="ST", name="ST3", compNames=c("U", "V", "W"))
A <- matrix(c(1,-1,1, 3,0,-2), 3, 2)
new.st <- affineTransSECdistr(st3, a=c(-3,0), A=A)
#
st2 <- marginalSECdistr(st3, comp=c(3,1), name="2D marginal of ST3")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.