Description Usage Arguments Details Value Author(s) References See Also Examples
The tuning parameter controls the L1 bound on w, the feature weights. A permutation approach is used to select the tuning parameter.
| 1 2 3 4 5 6 7 | 
| x | A nxp data matrix, with n observations and p feaures. | 
| nperms | The number of permutations to perform. | 
| wbounds | The sequence of tuning parameters to consider. The tuning parameters are the L1 bound on w, the feature weights. If NULL, then a default sequence will be used. If non-null, should be greater than 1. | 
| dissimilarity | How should dissimilarity be computed? Default is squared.distance. | 
| standardize.arrays | Should the arrays first be standardized? Default is FALSE. | 
| ... | not used. | 
Let $d_ii'j$ denote the dissimilarity between observations i and i' along feature j.
Sparse hierarchical clustering seeks a p-vector of weights w (one per feature) and a nxn matrix U that optimize $maximize_U,w sum_j w_j sum_ii' d_ii'j U_ii'$ subject to $||w||_2 <= 1, ||w||_1 <= s, w_j >= 0, sum_ii' U_ii'^2 <= 1$, where s is a value for the L1 bound on w. Let O(s) denote the objective function with tuning parameter s: i.e. $O(s)=sum_j w_j sum_ii' d_ii'j U_ii'$.
We permute the data as follows: within each feature, we permute the observations. Using the permuted data, we can run sparse hierarchical clustering with tuning parameter s, yielding the objective function O*(s). If we do this repeatedly we can get a number of O*(s) values.
Then, the Gap statistic is given by $Gap(s)=log(O(s))-mean(log(O*(s)))$. The optimal s is that which results in the highest Gap statistic. Or, we can choose the smallest s such that its Gap statistic is within $sd(log(O*(s)))$ of the largest Gap statistic.
| gaps | The gap statistics obtained (one for each of the tuning parameters tried). If O(s) is the objective function evaluated at the tuning parameter s, and O*(s) is the same quantity but for the permuted data, then Gap(s)=log(O(s))-mean(log(O*(s))). | 
| sdgaps | The standard deviation of log(O*(s)), for each value of the tuning parameter s. | 
| nnonzerows | The number of features with non-zero weights, for each value of the tuning parameter. | 
| wbounds | The tuning parameters considered. | 
| bestw | The value of the tuning parameter corresponding to the highest gap statistic. | 
Daniela M. Witten and Robert Tibshirani
Witten and Tibshirani (2009) A framework for feature selection in clustering.
HierarchicalSparseCluster, KMeansSparseCluster, KMeansSparseCluster.permute
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |   # Generate 2-class data
  set.seed(1)
  x <- matrix(rnorm(100*50),ncol=50)
  y <- c(rep(1,50),rep(2,50))
  x[y==1,1:25] <- x[y==1,1:25]+2
  # Do tuning parameter selection for sparse hierarchical clustering
  perm.out <- HierarchicalSparseCluster.permute(x, wbounds=c(1.5,2:6),
nperms=5)
  print(perm.out)
  plot(perm.out)
  # Perform sparse hierarchical clustering
  sparsehc <- HierarchicalSparseCluster(dists=perm.out$dists, wbound=perm.out$bestw, 
method="complete")
  par(mfrow=c(1,2))
  plot(sparsehc)
  plot(sparsehc$hc, labels=rep("", length(y)))
  print(sparsehc)
  # Plot using knowledge of class labels in order to compare true class
  #   labels to clustering obtained
  par(mfrow=c(1,1))
  ColorDendrogram(sparsehc$hc,y=y,main="My Simulated
Data",branchlength=.007)
 | 
Running sparse hierarchical clustering on unpermuted data
123456
Running sparse hierarchical clustering on permuted data
Permutation  1  of  5
123456
Permutation  2  of  5
123456
Permutation  3  of  5
123456
Permutation  4  of  5
123456
Permutation  5  of  5
123456
Tuning parameter selection results for Sparse Hierarchical Clustering:
  Wbound # Non-Zero W's Gap Statistic Standard Deviation
1    1.5              5        0.0594             0.0012
2    2.0              9        0.0801             0.0012
3    3.0             16        0.0953             0.0011
4    4.0             23        0.1000             0.0004
5    5.0             37        0.0960             0.0003
6    6.0             50        0.0790             0.0003
Tuning parameter that leads to largest Gap statistic:  4
1234567
Wbound is  4 :
Number of non-zero weights:  23
Sum of weights:  3.999973
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.