R/suffstat.R

Defines functions suffstat.poisson killinteraction suffstat.generic suffstat

Documented in killinteraction suffstat suffstat.generic suffstat.poisson

#
#   suffstat.R
#
# calculate sufficient statistic
#
#  $Revision: 1.19 $  $Date: 2022/11/03 11:08:33 $
#
#

suffstat <- function(model, X=data.ppm(model)) {
  cl <- sys.call()
  callstring <- short.deparse(cl)

  verifyclass(model, "ppm")
  if(!missing(X))
    verifyclass(X, "ppp")
  else
    X <- NULL

  inter    <- model$interaction

  func <- if(is.null(inter) || is.poisson(inter)) suffstat.poisson else 
          if(!is.null(ssinter  <- inter$suffstat)) ssinter else
          if(!is.null(ssfamily <- inter$family$suffstat)) ssfamily else
          suffstat.generic

  return(func(model, X, callstring))
}

suffstat.generic <- function(model, X=NULL, callstring="suffstat.generic") {
  # This should work for an arbitrary ppm
  # since it uses the fundamental relation between
  # conditional intensity and likelihood.
  # But it is computationally intensive.

  verifyclass(model, "ppm")
  coefnames <- names(coef(model))

  if(is.null(X)) {
    X <- data.ppm(model)
    modelX <- model
  } else {
    verifyclass(X, "ppp")
    # refit the model to new data (only to determine which data points are used)
    modelX <- update(model, X, improve.type="none")
  }
  
  # determine which data points contribute to pseudolikelihood
  contribute <- getppmdatasubset(modelX)

  if(!any(contribute)) 
    # result is zero vector
    return(0 * coef(model))

  # Add points one-by-one
  # If there are points which don't contribute, condition on them
  use <- which(contribute)   
  dontuse <- which(!contribute)
  for(i in seq_along(use)) {
    prior <- if(i == 1) c() else use[1:(i-1)]
    prior <- c(dontuse, prior)
    Xprior <- X[prior]
    Xcurrent <- X[use[i]]
    mom <- partialModelMatrix(Xprior, Xcurrent, model, "suffstat")
    lastrow <- length(prior) + 1
    momrow <- mom[lastrow, ]
    if(i == 1)
      result <- momrow
    else
      result <- momrow + result
  }
  names(result) <- coefnames
  attr(result, "mplsubset") <- NULL
  return(result)
}

killinteraction <- function(model) {
  verifyclass(model, "ppm")
  ispoisson <- summary(model, quick=TRUE)$poisson
  if(ispoisson)
    return(model)
  # surgery required
  newmodel <- model
  newmodel$interaction <- NULL
  if(!is.null(Vnames <- model$internal$Vnames)) {
    matches <- names(model$coef) %in% Vnames
    newmodel$coef <- model$coef[!matches]
    newmodel$internal$Vnames <- NULL
  }
  # the other 'internal' stuff may still be wrong (or `preserved')
  return(newmodel)
}

suffstat.poisson <- function(model, X, callstring="suffstat.poisson") {
  verifyclass(model, "ppm")
  if(is.null(X))
    X <- data.ppm(model)
  else 
    verifyclass(X, "ppp")
  
  if(!is.poisson(model))
    stop("Model is not a Poisson process")

  Empty <- X[numeric(0)]
  mom <- partialModelMatrix(X, Empty, model, "suffstat")

  nmom <- ncol(mom)
  ncoef <- length(coef(model))
  if(nmom != ncoef)
    stop("Internal error: number of columns of model matrix does not match number of coefficients in fitted model")
  
  if(nmom > 1 && any(colnames(mom) != names(coef(model))))
    warning("Internal error: mismatch between column names of model matrix and names of coefficient vector in fitted model")
     
  o1sum   <- apply(mom, 2, sum)
  return(o1sum)
}

Try the spatstat.model package in your browser

Any scripts or data that you put into this service are public.

spatstat.model documentation built on Sept. 30, 2024, 9:26 a.m.