basis_pca: The basis of Principal Component Analysis (PCA)

View source: R/0_util.r

basis_pcaR Documentation

The basis of Principal Component Analysis (PCA)

Description

The orthogonal linear components of the variables in the next largest direction of variance.

Usage

basis_pca(data, d = 2)

Arguments

data

Numeric matrix or data.frame of the observations.

d

Number of dimensions in the projection space.

See Also

Rdimtools::do.pca

Other basis producing functions: basis_guided(), basis_half_circle(), basis_odp(), basis_olda(), basis_onpp()

Examples

dat <- scale_sd(wine[, 2:6])
basis_pca(data = dat)

spinifex documentation built on May 29, 2024, 1:23 a.m.