Nothing
#' Use Gaussian log-likelihood estimation
#'
#' @param spcov_initial A \code{spcov_initial} object
#' @param estmethod The estimation method (\code{"reml"} or \code{"ml"})
#' @param X Model matrix
#' @param y Response vector
#' @param n Sample size
#' @param p Number of fixed effects
#' @param dist_matrix Distance matrix (Euclidean or neighbors)
#' @param spcov_profiled Is the spatial covariance profiled?
#' @param optim_dotlist optim dotlist
#' @param randcov_initial A \code{randcov_initial} object
#' @param randcov_Zs Random effects design matrices
#' @param observed_index The index of observed values
#' @param partition_matrix The partition matrix
#'
#' @return Estimated covariance parameters
#'
#' @noRd
use_gloglik <- function(spcov_initial, data_object, estmethod, dist_matrix_list, spcov_profiled,
randcov_initial = NULL, randcov_profiled = NULL, optim_dotlist) {
# transforming to optim paramters (log odds or log scale)
spcov_orig2optim_val <- spcov_orig2optim(spcov_initial = spcov_initial, spcov_profiled = spcov_profiled, data_object = data_object)
# transforming random effect parameters (if they are there else NULL)
randcov_orig2optim_val <- randcov_orig2optim(
randcov_initial = randcov_initial,
randcov_profiled = randcov_profiled,
spcov_initial = spcov_initial
)
# get optim par
optim_par <- get_optim_par(spcov_orig2optim_val, randcov_orig2optim_val)
# check optim dotlist
optim_dotlist <- check_optim_method(optim_par, optim_dotlist)
# performing optimization
optim_output <- do.call("optim", c(
list(
par = optim_par,
fn = gloglik,
spcov_orig2optim = spcov_orig2optim_val,
data_object = data_object,
estmethod = estmethod,
dist_matrix_list = dist_matrix_list,
spcov_profiled = spcov_profiled,
randcov_orig2optim = randcov_orig2optim_val,
randcov_profiled = randcov_profiled
),
optim_dotlist
))
# transforming to original scale
spcov_orig_val <- spcov_optim2orig(spcov_orig2optim_val, optim_output$par,
spcov_profiled = spcov_profiled,
data_object = data_object
)
# making a covariance parameter vector
spcov_params_val <- get_spcov_params(spcov_type = class(spcov_orig2optim_val), spcov_orig_val = spcov_orig_val)
# transforming to original scale
randcov_orig_val <- randcov_optim2orig(randcov_orig2optim_val,
spcov_orig2optim_val,
optim_output$par,
randcov_profiled = randcov_profiled,
spcov_optim2orig = spcov_params_val
)
# need to deal with list if randcov_profiled as sp variance changes
if (!is.null(randcov_profiled) && randcov_profiled) {
spcov_params_val <- randcov_orig_val$spcov_optim2orig
randcov_orig_val <- randcov_orig_val$fill_orig_val
}
# making a random effects vector
randcov_params_val <- randcov_params(randcov_orig_val)
if (spcov_profiled && (is.null(randcov_profiled) ||
(!is.null(randcov_profiled) && randcov_profiled))) {
# get the spcov_profiled variance
sigma2 <- get_prof_sigma2(
spcov_params_val, data_object, estmethod,
dist_matrix_list, randcov_params_val
)
# multiply by overall variance
spcov_params_val[["de"]] <- sigma2 * spcov_params_val[["de"]]
spcov_params_val[["ie"]] <- sigma2 * spcov_params_val[["ie"]]
if (!is.null(randcov_profiled)) {
randcov_params_val <- sigma2 * randcov_params_val
}
# add unconnected ar variance if needed
if (inherits(spcov_params_val, c("car", "sar"))) {
spcov_params_val[["extra"]] <- sigma2 * spcov_params_val[["extra"]]
}
}
# return parameter values and optim output
optim_output <- list(
method = optim_dotlist$method,
control = optim_dotlist$control, value = optim_output$value,
counts = optim_output$counts, convergence = optim_output$convergence,
message = optim_output$message,
hessian = if (optim_dotlist$hessian) optim_output$hessian else FALSE
)
# return list
list(
spcov_params_val = spcov_params_val, randcov_params_val = randcov_params_val,
optim_output = optim_output, dist_matrix_list = dist_matrix_list,
is_known = list(spcov = spcov_initial$is_known, randcov = randcov_initial$is_known)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.