plot_scores: Plots of score distribution

View source: R/sparsePCAloc_methods.R

plot_scoresR Documentation

Plots of score distribution

Description

Plots of score distribution

Usage

plot_scores(X, PC, groups, ssMRCD, ...)

Arguments

X

data matrix.

PC

loadings from PCA.

groups

vector containing group assignments.

ssMRCD

ssMRCD object.

...

other input arguments, see details.

Details

Additional parameters that can be given to the function are:

shape point shape
size point size
alpha transparency
k integer, which component scores should be plotted

Value

Returns histograms of scores for component k.

Examples

# set seed
set.seed(236)

data = matrix(rnorm(2000), ncol = 4)
groups = sample(1:10, 500, replace = TRUE)
W = time_weights(N = 10, c(3,2,1))

# calculate covariance matrices
covs = ssMRCD(data, groups = groups, weights = W, lambda = 0.3)

# sparse PCA
pca = sparsePCAloc(eta = 0.3, gamma = 0.7, cor = FALSE, COVS = covs$MRCDcov,
             n_max = 1000, increase_rho = list(TRUE, 50, 1), trace = FALSE)

# plot score distances
plot_scores(PC = pca$PC,
            groups = groups,
            X = data,
            ssMRCD = covs,
            k = 1,
            alpha = 0.4,
            shape = 16,
            size = 2)

ssMRCD documentation built on Sept. 11, 2024, 5:14 p.m.