Nothing
## ---- echo = FALSE------------------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
## -----------------------------------------------------------------------------
library(standardize)
summary(ptk)
## -----------------------------------------------------------------------------
mean(ptk$cdur)
sd(ptk$cdur)
mean(ptk$speechrate)
sd(ptk$speechrate)
summary(lm(cdur ~ speechrate, ptk))
## -----------------------------------------------------------------------------
ptk$cdur_scaled <- scale(ptk$cdur)[, 1]
ptk$sr_scaled <- scale(ptk$speechrate)[, 1]
mean(ptk$cdur_scaled)
sd(ptk$cdur_scaled)
mean(ptk$sr_scaled)
sd(ptk$sr_scaled)
summary(lm(cdur_scaled ~ sr_scaled, ptk))
## -----------------------------------------------------------------------------
ptk$sr_scaled_by_speaker <- scale_by(speechrate ~ speaker, ptk)
mean(ptk$sr_scaled_by_speaker)
sd(ptk$sr_scaled_by_speaker)
with(ptk, tapply(speechrate, speaker, mean))
with(ptk, tapply(speechrate, speaker, sd))
with(ptk, tapply(sr_scaled, speaker, mean))
with(ptk, tapply(sr_scaled, speaker, sd))
with(ptk, tapply(sr_scaled_by_speaker, speaker, mean))
with(ptk, tapply(sr_scaled_by_speaker, speaker, sd))
## -----------------------------------------------------------------------------
ptk$sr_scaled_0.5 <- scale(ptk$speechrate) * 0.5
ptk$sr_scaled_by_speaker_0.5 <- scale_by(speechrate ~ speaker, ptk, scale = 0.5)
mean(ptk$sr_scaled_0.5)
sd(ptk$sr_scaled_0.5)
with(ptk, tapply(sr_scaled_by_speaker_0.5, speaker, mean))
with(ptk, tapply(sr_scaled_by_speaker_0.5, speaker, sd))
## -----------------------------------------------------------------------------
options(contrasts = c("contr.treatment", "contr.poly"))
contrasts(ptk$prevowel)
summary(lm(cdur_scaled ~ prevowel, ptk))
## -----------------------------------------------------------------------------
options(contrasts = c("contr.sum", "contr.poly"))
contrasts(ptk$prevowel)
summary(lm(cdur_scaled ~ prevowel, ptk))
## -----------------------------------------------------------------------------
contrasts(ptk$prevowel) <- named_contr_sum(ptk$prevowel)
contrasts(ptk$prevowel)
summary(lm(cdur_scaled ~ prevowel, ptk))
## -----------------------------------------------------------------------------
contrasts(ptk$prevowel) <- named_contr_sum(ptk$prevowel, scale = 0.5)
contrasts(ptk$prevowel)
## -----------------------------------------------------------------------------
ptk$prehigh <- ptk$prevowel %in% c("i", "u")
class(ptk$prehigh)
unique(ptk$prehigh)
ptk$prehigh <- named_contr_sum(ptk$prehigh, return_contr = FALSE)
class(ptk$prehigh)
levels(ptk$prehigh)
contrasts(ptk$prehigh)
## -----------------------------------------------------------------------------
ptk$preheight <- "Mid"
ptk$preheight[ptk$prevowel == "a"] <- "Low"
ptk$preheight[ptk$prevowel %in% c("i", "u")] <- "High"
ptk$preheight <- factor(ptk$preheight, ordered = TRUE, levels = c("Low",
"Mid", "High"))
head(ptk$preheight)
contrasts(ptk$preheight)
## -----------------------------------------------------------------------------
contr3 <- contr.poly(3)
contr5 <- contr.poly(5)
apply(contr3, 2, mean)
apply(contr5, 2, mean)
apply(contr3, 2, sd)
apply(contr5, 2, sd)
## -----------------------------------------------------------------------------
sc_1_contr3 <- scaled_contr_poly(3)
sc_0.5_contr3 <- scaled_contr_poly(3, scale = 0.5)
sc_1_contr3
apply(sc_1_contr3, 2, sd)
sc_0.5_contr3
apply(sc_0.5_contr3, 2, sd)
## -----------------------------------------------------------------------------
contrasts(ptk$preheight)
summary(lm(cdur_scaled ~ preheight, ptk))
contrasts(ptk$preheight) <- scaled_contr_poly(ptk$preheight)
contrasts(ptk$preheight)
summary(lm(cdur_scaled ~ preheight, ptk))
## -----------------------------------------------------------------------------
ptk$preheight <- "Mid"
ptk$preheight[ptk$prevowel == "a"] <- "Low"
ptk$preheight[ptk$prevowel %in% c("i", "u")] <- "High"
ptk$preheight <- factor(ptk$preheight, ordered = TRUE, levels = c("Low",
"Mid", "High"))
sobj <- standardize(cdur ~ place + stress + preheight + log(wordfreq) +
scale_by(speechrate ~ speaker) + (1 | speaker), ptk)
## -----------------------------------------------------------------------------
is.standardized(sobj)
sobj
names(sobj)
head(sobj$data)
mean(sobj$data$cdur)
sd(sobj$data$cdur)
mean(sobj$data$log_wordfreq)
sd(sobj$data$log_wordfreq)
all.equal(scale(log(ptk$wordfreq))[, 1], sobj$data$log_wordfreq[, 1])
with(sobj$data, tapply(speechrate_scaled_by_speaker, speaker, mean))
with(sobj$data, tapply(speechrate_scaled_by_speaker, speaker, sd))
sobj$contrasts
sobj$groups
## -----------------------------------------------------------------------------
sobj <- standardize(cdur ~ place + stress + preheight + log(wordfreq) +
scale_by(speechrate ~ speaker) + (1 | speaker), ptk, scale = 0.5)
sobj
names(sobj)
head(sobj$data)
mean(sobj$data$cdur)
sd(sobj$data$cdur)
mean(sobj$data$log_wordfreq)
sd(sobj$data$log_wordfreq)
all.equal(0.5 * scale(log(ptk$wordfreq))[, 1], sobj$data$log_wordfreq[, 1])
with(sobj$data, tapply(speechrate_scaled_by_speaker, speaker, mean))
with(sobj$data, tapply(speechrate_scaled_by_speaker, speaker, sd))
sobj$contrasts
sobj$groups
## -----------------------------------------------------------------------------
library(lme4)
mod <- lmer(sobj$formula, sobj$data)
summary(mod)
## -----------------------------------------------------------------------------
newdata <- predict(sobj, ptk)
newdata_fe <- predict(sobj, ptk, random = FALSE)
newdata_re <- predict(sobj, ptk, fixed = FALSE)
head(newdata)
head(newdata_fe)
head(newdata_re)
## -----------------------------------------------------------------------------
# predictions using both the fixed and random effects
preds <- predict(mod, newdata = newdata)
all.equal(preds, fitted(mod))
# predictions using only the fixed effects
preds_fe <- predict(mod, newdata = newdata_fe, re.form = NA)
head(preds)
head(preds_fe)
## -----------------------------------------------------------------------------
library(afex)
pvals <- mixed(mod, data = sobj$data, check_contrasts = FALSE)
pvals
## -----------------------------------------------------------------------------
library(emmeans)
stress_comparisons <- emmeans(mod, pairwise ~ stress)
stress_comparisons
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.