centrality_description: Data frame and expression for distribution properties

View source: R/centrality-description.R

centrality_descriptionR Documentation

Data frame and expression for distribution properties

Description

Parametric, non-parametric, robust, and Bayesian measures of centrality.

Usage

centrality_description(
  data,
  x,
  y,
  type = "parametric",
  conf.level = NULL,
  tr = 0.2,
  digits = 2L,
  ...
)

Arguments

data

A data frame (or a tibble) from which variables specified are to be taken. Other data types (e.g., matrix,table, array, etc.) will not be accepted. Additionally, grouped data frames from {dplyr} should be ungrouped before they are entered as data.

x

The grouping (or independent) variable in data.

y

The response (or outcome or dependent) variable from data.

type

A character specifying the type of statistical approach:

  • "parametric"

  • "nonparametric"

  • "robust"

  • "bayes"

You can specify just the initial letter.

conf.level

Scalar between 0 and 1 (default: ⁠95%⁠ confidence/credible intervals, 0.95). If NULL, no confidence intervals will be computed.

tr

Trim level for the mean when carrying out robust tests. In case of an error, try reducing the value of tr, which is by default set to 0.2. Lowering the value might help.

digits

Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also signif()).

...

Currently ignored.

Details

This function describes a distribution for y variable for each level of the grouping variable in x by a set of indices (e.g., measures of centrality, dispersion, range, skewness, kurtosis, etc.). It additionally returns an expression containing a specified centrality measure. The function internally relies on datawizard::describe_distribution() function.

Centrality measures

The table below provides summary about:

  • statistical test carried out for inferential statistics

  • type of effect size estimate and a measure of uncertainty for this estimate

  • functions used internally to compute these details

Type Measure Function used
Parametric mean datawizard::describe_distribution()
Non-parametric median datawizard::describe_distribution()
Robust trimmed mean datawizard::describe_distribution()
Bayesian MAP datawizard::describe_distribution()

Examples

# for reproducibility
set.seed(123)

# ----------------------- parametric -----------------------

centrality_description(iris, Species, Sepal.Length, type = "parametric")

# ----------------------- non-parametric -------------------

centrality_description(mtcars, am, wt, type = "nonparametric")

# ----------------------- robust ---------------------------

centrality_description(ToothGrowth, supp, len, type = "robust")

# ----------------------- Bayesian -------------------------

centrality_description(sleep, group, extra, type = "bayes")

statsExpressions documentation built on May 29, 2024, 4:28 a.m.