one_sample_test: One-sample tests

View source: R/one-sample-test.R

one_sample_testR Documentation

One-sample tests

Description

Parametric, non-parametric, robust, and Bayesian one-sample tests.

Usage

one_sample_test(
  data,
  x,
  type = "parametric",
  test.value = 0,
  alternative = "two.sided",
  digits = 2L,
  conf.level = 0.95,
  tr = 0.2,
  bf.prior = 0.707,
  effsize.type = "g",
  ...
)

Arguments

data

A data frame (or a tibble) from which variables specified are to be taken. Other data types (e.g., matrix,table, array, etc.) will not be accepted. Additionally, grouped data frames from {dplyr} should be ungrouped before they are entered as data.

x

A numeric variable from the data frame data.

type

A character specifying the type of statistical approach:

  • "parametric"

  • "nonparametric"

  • "robust"

  • "bayes"

You can specify just the initial letter.

test.value

A number indicating the true value of the mean (Default: 0).

alternative

a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.

digits

Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also signif()).

conf.level

Scalar between 0 and 1 (default: ⁠95%⁠ confidence/credible intervals, 0.95). If NULL, no confidence intervals will be computed.

tr

Trim level for the mean when carrying out robust tests. In case of an error, try reducing the value of tr, which is by default set to 0.2. Lowering the value might help.

bf.prior

A number between 0.5 and 2 (default 0.707), the prior width to use in calculating Bayes factors and posterior estimates. In addition to numeric arguments, several named values are also recognized: "medium", "wide", and "ultrawide", corresponding to r scale values of 1/2, sqrt(2)/2, and 1, respectively. In case of an ANOVA, this value corresponds to scale for fixed effects.

effsize.type

Type of effect size needed for parametric tests. The argument can be "d" (for Cohen's d) or "g" (for Hedge's g).

...

Currently ignored.

Value

The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):

  • statistic: the numeric value of a statistic

  • df: the numeric value of a parameter being modeled (often degrees of freedom for the test)

  • df.error and df: relevant only if the statistic in question has two degrees of freedom (e.g. anova)

  • p.value: the two-sided p-value associated with the observed statistic

  • method: the name of the inferential statistical test

  • estimate: estimated value of the effect size

  • conf.low: lower bound for the effect size estimate

  • conf.high: upper bound for the effect size estimate

  • conf.level: width of the confidence interval

  • conf.method: method used to compute confidence interval

  • conf.distribution: statistical distribution for the effect

  • effectsize: the name of the effect size

  • n.obs: number of observations

  • expression: pre-formatted expression containing statistical details

For examples, see data frame output vignette.

One-sample tests

The table below provides summary about:

  • statistical test carried out for inferential statistics

  • type of effect size estimate and a measure of uncertainty for this estimate

  • functions used internally to compute these details

Hypothesis testing

Type Test Function used
Parametric One-sample Student's t-test stats::t.test()
Non-parametric One-sample Wilcoxon test stats::wilcox.test()
Robust Bootstrap-t method for one-sample test WRS2::trimcibt()
Bayesian One-sample Student's t-test BayesFactor::ttestBF()

Effect size estimation

Type Effect size CI available? Function used
Parametric Cohen's d, Hedge's g Yes effectsize::cohens_d(), effectsize::hedges_g()
Non-parametric r (rank-biserial correlation) Yes effectsize::rank_biserial()
Robust trimmed mean Yes WRS2::trimcibt()
Bayes Factor difference Yes bayestestR::describe_posterior()

Examples

# for reproducibility
set.seed(123)

# ----------------------- parametric -----------------------

one_sample_test(mtcars, wt, test.value = 3)

# ----------------------- non-parametric -------------------

one_sample_test(mtcars, wt, test.value = 3, type = "nonparametric")

# ----------------------- robust ---------------------------

one_sample_test(mtcars, wt, test.value = 3, type = "robust")

# ----------------------- Bayesian -------------------------

one_sample_test(mtcars, wt, test.value = 3, type = "bayes")

statsExpressions documentation built on May 29, 2024, 4:28 a.m.