R/stdmod.R

Defines functions stdmod

Documented in stdmod

#' @title Standardized Moderation Effect Given an 'lm' Output
#'
#' @description Compute the standardized moderation effect in a moderated
#'                regression model.
#'
#' @details Two more general functions, [std_selected()] and
#' [std_selected_boot()], have been developed and can do what these functions
#' do and more. Users are recommended to use them instead of [stdmod()] and
#' [stdmod_boot()]. These two functions will not be updated in the near
#' future.
#'
#' Nevertheless, if computing the standardized moderation effect and
#' forming its nonparametric
#' bootstrap interval are all required, then these functions can still
#' be used.
#'
#' [stdmod()] computes the standardized moderation effect given an
#' [lm()] output using the formula from Cheung, Cheung, Lau, Hui, and Vong
#' (2022). Users specify
#' the moderator, the focal variable (the variable with its effect on
#' the outcome variable moderated), the outcome variable (dependent variable)
#' , and the corresponding
#' standardized moderation
#' effect. Users can also select which variable(s) will be standardized.
#'
#' @return
#' [stdmod()] returns a scalar: The standardized moderation effect.
#'
#' @param lm_out The output from [lm()].
#' @param x      The focal variable, that is, the variable with its effect
#'              being moderated. If supplied, its standard deviation will be
#'              used
#'              for rescaling. Also called the independent variable in some
#'              models. Default is `NULL`.
#' @param w      The moderator. If supplied, its standard deviation will be
#'              used
#'              for rescaling. Default is `NULL`.
#' @param y      The outcome variable (dependent variable) . If supplied,
#'              its standard
#'              deviation will be used for rescaling. Default is NULL.
#' @param x_rescale  If `TRUE`, will rescale x by its standard deviation.
#'                   Default is `TRUE`.
#' @param w_rescale  If `TRUE`, will rescale w by its standard deviation.
#'                    Default is `TRUE`.
#' @param y_rescale  If `TRUE`, will rescale y by its standard deviation.
#'                   Default is `TRUE`.
#'
#'
#' @author Shu Fai Cheung <https://orcid.org/0000-0002-9871-9448>
#'
#' @references
#' Cheung, S. F., Cheung, S.-H., Lau, E. Y. Y., Hui, C. H., & Vong, W. N.
#' (2022) Improving an old way to measure moderation effect in standardized
#' units. *Health Psychology*, *41*(7), 502-505.
#' \doi{10.1037/hea0001188}
#'
#' @examples
#'
#' # Load a test data of 500 cases
#'
#' dat <- test_x_1_w_1_v_2_n_500
#'
#' # Do regression as usual:
#' lm_raw <- lm(dv ~ iv*mod + v1 + v2, dat)
#' summary(lm_raw)
#'
#' # The standard deviations of iv, dv, and mod:
#' sds <- apply(dat, 2, sd)
#' sds
#'
#' # Compute the standardized moderation effect:
#' stdmod_xyw <- stdmod(lm_raw, x = iv, y = dv, w = mod)
#' stdmod_xyw
#' # By default, all three variables will be standardized.
#'
#' # Check against self-computed standardized moderation effect:
#' coef(lm_raw)["iv:mod"] * sds["iv"] * sds["mod"] / sds["dv"]
#'
#' # Standardize only the iv, i.e., do not standardized dv and the moderator:
#' stdmod_x <- stdmod(lm_raw, x = iv, y = dv, w = mod,
#'                    x_rescale = TRUE,  y_rescale = FALSE, w_rescale = FALSE)
#' stdmod_x
#' # Check against self-computed moderation effect with only iv standardized:
#' coef(lm_raw)["iv:mod"] * sds["iv"]
#'
#' @export
#' @describeIn stdmod The base function for computing standardized
#'             moderation effect
#' @order 1

stdmod <- function(lm_out, x = NULL, w = NULL, y = NULL,
                           x_rescale = TRUE,
                           w_rescale = TRUE,
                           y_rescale = TRUE) {
    mycall <- match.call()
    if (any(c(is.null(mycall$x), is.null(mycall$w), is.null(mycall$y)))) {
        stop("The arguments x, w, and y cannot be NULL.")
      }
    x_name <- deparse(substitute(x))
    w_name <- deparse(substitute(w))
    y_name <- deparse(substitute(y))
    b_names <- names(stats::coef(lm_out))
    mod_name1 <- paste0(x_name, ":", w_name)
    mod_name2 <- paste0(w_name, ":", x_name)
    mod_pos <- grepl(mod_name1, b_names) | grepl(mod_name2, b_names)
    if (!any(mod_pos)) {
        stop("The product term not found in the lm output.")
      }
    b_xw <- stats::coef(lm_out)[mod_pos]
    model_names <- colnames(lm_out$model)
    if (x_rescale) {
        if (!(x_name %in% model_names)) {
            stop("x not in the data frame")
          }
        x_dat <- eval(substitute(x),lm_out$model, parent.frame())
        x_sd  <- stats::sd(x_dat)
      } else {
        x_dat <- NULL
        x_sd  <- 1
      }
     if (w_rescale) {
        if (!(w_name %in% model_names)) {stop("w not in the data frame")}
        w_dat <- eval(substitute(w), lm_out$model, parent.frame())
        w_sd  <- stats::sd(w_dat)
      } else {
        w_dat <- NULL
        w_sd  <- 1
      }
    if (y_rescale) {
        if (!(y_name %in% model_names)) {stop("y not in the data frame")}
        y_dat <- eval(substitute(y), lm_out$model, parent.frame())
        y_sd  <- stats::sd(y_dat)
      } else {
        y_dat <- NULL
        y_sd  <- 1
      }
    out <- ((x_sd) * (w_sd) / (y_sd)) * b_xw
    out
  }

Try the stdmod package in your browser

Any scripts or data that you put into this service are public.

stdmod documentation built on Sept. 30, 2024, 9:42 a.m.