Nothing
#### GLOBAL VARIABLES ####
utils::globalVariables(c("SD", "group1", "group2", "n", "prop", "score", "sds", "spec"))
cli_class <- list(
error = list(
Class = "ClassError",
Type = "TypeError",
Attached = "AttachedError",
TableConflict = "TableConflictError",
NoScale = "NoScaleError",
NoTable = "NoTableError",
NoValidWhat = "NoValidWhatError",
NoValidVars = "NoValidVarsError",
NoValidRetain = "NoValidRetainError",
NoConditionsVars = "NoConditionsVarsError",
NoCompatibleAssignements = "NoCompatibleAssignementsError",
WrongLength = "WrongLengthError",
ScaleNonunequicoval = "ScaleNonunequivocalError",
NoConditions = "NoConditionsError",
WrongSource = "WrongSourceError",
ScoringImport = "ScoringImportError",
TooManyConditions = "TooManyConditionsError",
WrongGroup = "WrongGroupError",
WrongFormula = "WrongFormulaError",
WrongIdVal = "WrongIdValError",
WrongMinMax = "WrongMinMax",
BadName = "BadNameError"
),
warning = list(
Type = "TypeWarning",
NonExportedConditions = "NonExportedConditionsWarning",
NonExhaustive = "NonExhaustiveWarning",
NotSummed = "NotSummedWarning",
NoInputNA = "NoInputNAWarning"
),
message = list(
IncompleteRange = "IncompleteRangeMessage"
)
)
# all .warnings for functions
# .warnings <- list(
# # stop message for not probiding data in data.frame object
# data.frame_required = "Data should be provided in form of the 'data.frame' object.",
#
# # stop message for not providing the "scale" argument when it is needed
# valid_scale_required = "Please provide valid 'scale' argument. You can only get scores for scale which was computed first by using 'compute_scores()' method",
#
# # stop message for when id isn't specified with keep_data set to TRUE
# missing_id_for_keep = "While the 'keep_data' is set to TRUE, you also need to provide column name for 'id'",
#
# # warning for mussing values also returns for which variables the warnings are generated
# missing_values = function(name){
# paste0(
# "For [", name,
# "]: There are missing score values between minimum and maximum scores. They have been filled automatically, though have in mind that you should get more representative sample.")
# },
#
# # stop message if there is not kept data and it is needed
# need_source_data = "You tried to do something that requires your class to have kept the data.",
#
# # stop message if provided id is not valid
# valid_id_required = "Please provide valid ids. All of the provided ids should be in the data.",
#
# # stop message if provided variable name is not valid
# bad_var_name = "Please provide valid variable names.",
#
# # stop message if provided id name is not valid
# bad_id_name = "Please provide valid column name containing ids."
# )
FQ_incomplete_message <- function(incompletes, total) {
cli::cli_inform(
message = c("i" = "There are missing raw score values between minimum and maximum raw scores. They have been filled automatically.",
" " = "No. missing: {length(incompletes)}/{total} [{round(length(incompletes)/total*100, 2)}%]"),
class = cli_class$message$IncompleteRange
)
}
GFQ_incomplete_message <- function(groups, incompletes, total) {
incompletes <- sapply(incompletes, length)
percentages <- sapply(seq_along(groups), \(i) paste0(round(incompletes[i]/total[i]*100, 2), "%"))
cli::cli_inform(
message = c(
"i" = "There are missing raw score values between minimum and maximum raw scores for some groups. They have been filled automatically.",
stats::setNames(nm = rep("*", length = length(groups)),
object = sapply(seq_along(groups),
\(i) paste0("{.field {groups[", i, "]}} No. missing: {incompletes[", i,"]}/{total[", i, "]}; {percentages[", i, "]}")))),
class = cli_class$message$IncompleteRange
)
}
GA_exhaustive_warning <- function()
cli::cli_warn(c("!" = "Some observations were not assigned on provided condition. Set the {.code force_exhaustive = TRUE} to gather them in {.code .NA} group."),
class = cli_class$warning$NonExhaustive)
#' @title Mockup NA table
#' @description Creates mockup table if none is available for given group. Used in
#' [normalize_scores_grouped()]. All results passed through it will have their values
#' "normalized" into `NA`
#' @param table Table to mockup
#' @keywords internal
mockNAtable <- function(table) {
mockup <- data.frame(
score = table$table[["score"]]
)
for(col in names(table$table)[-1:-2])
mockup[[col]] <- NA
out <- list(table = mockup)
if ("scale" %in% names(table))
out[["scale"]] <- table[["scale"]]
class(out) <- class(table)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.