| DSD_Cubes | R Documentation | 
A data stream generator that produces a data stream with static (hyper) cubes filled uniformly with data points.
DSD_Cubes(k = 2, d = 2, center, size, p, noise = 0, noise_range)
| k | Determines the number of clusters. | 
| d | Determines the number of dimensions. | 
| center | A matrix of means for each dimension of each cluster. | 
| size | A  | 
| p | A vector of probabilities that determines the likelihood of generated a data point from a particular cluster. | 
| noise | Noise probability between 0 and 1. Noise is uniformly distributed within noise range (see below). | 
| noise_range | A matrix with d rows and 2 columns. The first column contains the minimum values and the second column contains the maximum values for noise. | 
Returns a DSD_Cubes object (subclass of DSD_R, DSD).
Michael Hahsler
Other DSD: 
DSD(),
DSD_BarsAndGaussians(),
DSD_Benchmark(),
DSD_Gaussians(),
DSD_MG(),
DSD_Memory(),
DSD_Mixture(),
DSD_NULL(),
DSD_ReadDB(),
DSD_ReadStream(),
DSD_Target(),
DSD_UniformNoise(),
DSD_mlbenchData(),
DSD_mlbenchGenerator(),
DSF(),
animate_data(),
close_stream(),
get_points(),
plot.DSD(),
reset_stream()
# create data stream with three clusters in 3D
stream <- DSD_Cubes(k = 3, d = 3, noise = 0.05)
get_points(stream, n = 5)
plot(stream)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.