DSD_MG | R Documentation |
Creates an evolving DSD that consists of several MGC, each representing a moving cluster.
DSD_MG(dimension = 2, ..., labels = NULL, description = NULL)
add_cluster(x, c, label = NULL)
get_clusters(x)
remove_cluster(x, i)
## S3 method for class 'DSD_MG'
add_cluster(x, c, label = NULL)
dimension |
the dimension of the DSD object |
... |
initial set of MGCs |
description |
An optional string used by |
x |
A |
c |
The cluster that should be added to the |
label , labels |
integer representing the cluster label. |
i |
The index of the cluster that should be removed from the
|
This DSD is able to generate complex datasets that are able to evolve over a period of time. Its behavior is determined by as set of MGCs, each representing a moving cluster.
Matthew Bolanos
MGC for types of moving clusters.
Other DSD:
DSD()
,
DSD_BarsAndGaussians()
,
DSD_Benchmark()
,
DSD_Cubes()
,
DSD_Gaussians()
,
DSD_Memory()
,
DSD_Mixture()
,
DSD_NULL()
,
DSD_ReadDB()
,
DSD_ReadStream()
,
DSD_Target()
,
DSD_UniformNoise()
,
DSD_mlbenchData()
,
DSD_mlbenchGenerator()
,
DSF()
,
animate_data()
,
close_stream()
,
get_points()
,
plot.DSD()
,
reset_stream()
### create an empty DSD_MG
stream <- DSD_MG(dim = 2)
stream
### add two clusters
c1 <- MGC_Random(density = 50, center = c(50, 50), parameter = 1)
add_cluster(stream, c1)
stream
c2 <- MGC_Noise(density = 1, range = rbind(c(-20, 120), c(-20, 120)))
add_cluster(stream, c2)
stream
get_clusters(stream)
get_points(stream, n = 5)
plot(stream, xlim = c(-20,120), ylim = c(-20, 120))
if (interactive()) {
animate_data(stream, n = 5000, xlim = c(-20, 120), ylim = c(-20, 120))
}
### remove cluster 1
remove_cluster(stream, 1)
stream
get_clusters(stream)
plot(stream, xlim = c(-20, 120), ylim = c(-20, 120))
### create a more complicated cluster structure (using 2 clusters with the same
### label to form an L shape)
stream <- DSD_MG(dim = 2,
MGC_Static(density = 10, center = c(.5, .2), par = c(.4, .2), shape = Shape_Block),
MGC_Static(density = 10, center = c(.6, .5), par = c(.2, .4), shape = Shape_Block),
MGC_Static(density = 5, center = c(.39, .53), par = c(.16, .35), shape = Shape_Block),
MGC_Noise( density = 1, range = rbind(c(0,1), c(0,1))),
labels = c(1, 1, 2, NA)
)
stream
plot(stream, xlim = c(0, 1), ylim = c(0, 1))
### simulate the clustering of a splitting cluster
c1 <- MGC_Linear(dim = 2, keyframelist = list(
keyframe(time = 1, dens = 20, center = c(0,0), param = 10),
keyframe(time = 50, dens = 10, center = c(50,50), param = 10),
keyframe(time = 100,dens = 10, center = c(50,100),param = 10)
))
### Note: Second cluster appearch at time=50
c2 <- MGC_Linear(dim = 2, keyframelist = list(
keyframe(time = 50, dens = 10, center = c(50,50), param = 10),
keyframe(time = 100,dens = 10, center = c(100,50),param = 10)
))
stream <- DSD_MG(dim = 2, c1, c2)
stream
dbstream <- DSC_DBSTREAM(r = 20, lambda = 0.1)
if (interactive()) {
purity <- animate_cluster(dbstream, stream, n = 2500, type = "micro",
xlim = c(-10, 120), ylim = c(-10, 120), measure = "purity", horizon = 100)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.