Description Usage Format Details Methods Active Bindings
R6 class for controlling the internal implementation of Q-learning functionality.
Supports sequential (recursive) G-computation and longitudinal TMLE.
Inherits from BinaryOutcomeModel R6 Class.
1 |
An R6Class generator object
regimen_names - character. Note used. For future pooling across regimens.
classify - ... logical
TMLE - ... logical
nIDs - ... integer
stratifyQ_by_rule - ... logical
lower_bound_zero_Q - ... logical
skip_update_zero_Q - ... logical
Qreg_counter - ... integer
t_period - ... integer
idx_used_to_fit_initQ - ... integer
new(reg, ...)...
define.subset.idx(data, subset_vars, subset_exprs)...
define_idx_to_fit_initQ(data)...
define_idx_to_predictQ(data)...
fit(overwrite = FALSE, data, ...)...
Propagate_TMLE_fit(overwrite = TRUE, data, new.TMLE.fit, ...)...
predict(newdata, subset_idx, ...)...
predictStatic(data, g0, gstar, subset_idx)...
predictStochastic(data, g0, gstar, subset_idx, stoch_indicator)...
predictAeqa(newdata, ...)...
get.fits()...
wipe.alldat...
getfit...
getTMLEfit...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.