survDirectIPW: Direct (bounded) IPW estimator of discrete survival function.

Description Usage Arguments Value Examples

View source: R/main_estimation.R

Description

Direct (bounded) IPW estimator of discrete survival function.

Usage

1
survDirectIPW(wts_data, OData, weights, trunc_weights)

Arguments

wts_data

data.table returned by a single call to getIPWeights. Must contain the treatment/monitoring estimated IPTW weights for a SINGLE rule.

OData

The object returned by function fitPropensity. Contains the input data and the previously fitted propensity score models for the exposure, monitoring and right-censoring.

weights

(NOT IMPLEMENTED) Optional data.table with additional observation-time-specific weights. Must contain columns ID, t and weight. The column named weight is merged back into the original data according to (ID, t).

trunc_weights

(NOT IMPLEMENTED) Specify the numeric weight truncation value. All final weights exceeding the value in trunc_weights will be truncated.

Value

A data.table with bounded IPW estimates of risk and survival by time.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
options(stremr.verbose = TRUE)
require("data.table")
set_all_stremr_options(fit.package = "speedglm", fit.algorithm = "glm")

# ----------------------------------------------------------------------
# Simulated Data
# ----------------------------------------------------------------------
data(OdataNoCENS)
OdataDT <- as.data.table(OdataNoCENS, key=c(ID, t))

# define lagged N, first value is always 1 (always monitored at the first time point):
OdataDT[, ("N.tminus1") := shift(get("N"), n = 1L, type = "lag", fill = 1L), by = ID]
OdataDT[, ("TI.tminus1") := shift(get("TI"), n = 1L, type = "lag", fill = 1L), by = ID]

# ----------------------------------------------------------------------
# Define intervention (always treated):
# ----------------------------------------------------------------------
OdataDT[, ("TI.set1") := 1L]
OdataDT[, ("TI.set0") := 0L]

# ----------------------------------------------------------------------
# Import Data
# ----------------------------------------------------------------------
OData <- importData(OdataDT, ID = "ID", t = "t", covars = c("highA1c", "lastNat1", "N.tminus1"),
                    CENS = "C", TRT = "TI", MONITOR = "N", OUTCOME = "Y.tplus1")

# ----------------------------------------------------------------------
# Model the Propensity Scores
# ----------------------------------------------------------------------
gform_CENS <- "C ~ highA1c + lastNat1"
gform_TRT = "TI ~ CVD + highA1c + N.tminus1"
gform_MONITOR <- "N ~ 1"
stratify_CENS <- list(C=c("t < 16", "t == 16"))

# ----------------------------------------------------------------------
# Fit Propensity Scores
# ----------------------------------------------------------------------
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# ----------------------------------------------------------------------
# IPW Ajusted KM or Saturated MSM
# ----------------------------------------------------------------------
require("magrittr")
AKME.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
             survNPMSM(OData) %$%
             IPW_estimates
AKME.St.1

# ----------------------------------------------------------------------
# Bounded IPW
# ----------------------------------------------------------------------
IPW.St.1 <- getIPWeights(OData, intervened_TRT = "TI.set1") %>%
             survDirectIPW(OData)
IPW.St.1[]

# ----------------------------------------------------------------------
# IPW-MSM for hazard
# ----------------------------------------------------------------------
wts.DT.1 <- getIPWeights(OData = OData, intervened_TRT = "TI.set1", rule_name = "TI1")
wts.DT.0 <- getIPWeights(OData = OData, intervened_TRT = "TI.set0", rule_name = "TI0")
survMSM_res <- survMSM(list(wts.DT.1, wts.DT.0), OData, t_breaks = c(1:8,12,16)-1,)
survMSM_res$St

# ----------------------------------------------------------------------
# Sequential G-COMP
# ----------------------------------------------------------------------
t.surv <- c(0:15)
Qforms <- rep.int("Q.kplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params = list(fit.package = "speedglm", fit.algorithm = "glm")

## Not run: 
gcomp_est <- fitSeqGcomp(OData, t_periods = t.surv, intervened_TRT = "TI.set1",
                          Qforms = Qforms, params_Q = params, stratifyQ_by_rule = FALSE)
gcomp_est[]

## End(Not run)
# ----------------------------------------------------------------------
# TMLE
# ----------------------------------------------------------------------
## Not run: 
tmle_est <- fitTMLE(OData, t_periods = t.surv, intervened_TRT = "TI.set1",
                    Qforms = Qforms, params_Q = params, stratifyQ_by_rule = TRUE)
tmle_est[]

## End(Not run)

# ----------------------------------------------------------------------
# Running IPW-Adjusted KM with optional user-specified weights:
# ----------------------------------------------------------------------
addedWts_DT <- OdataDT[, c("ID", "t"), with = FALSE]
addedWts_DT[, new.wts := sample.int(10, nrow(OdataDT), replace = TRUE)/10]
survNP_res_addedWts <- survNPMSM(wts.DT.1, OData, weights = addedWts_DT)

# ----------------------------------------------------------------------
# Multivariate Propensity Score Regressions
# ----------------------------------------------------------------------
gform_CENS <- "C + TI + N ~ highA1c + lastNat1"
OData <- fitPropensity(OData, gform_CENS = gform_CENS, gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR)

# ----------------------------------------------------------------------
# Fitting Propensity scores with Random Forests:
# ----------------------------------------------------------------------
## Not run: 
set_all_stremr_options(fit.package = "h2o", fit.algorithm = "randomForest")
require("h2o")
h2o::h2o.init(nthreads = -1)
gform_CENS <- "C ~ highA1c + lastNat1"
OData <- fitPropensity(OData, gform_CENS = gform_CENS,
                        gform_TRT = gform_TRT,
                        gform_MONITOR = gform_MONITOR,
                        stratify_CENS = stratify_CENS)

# For Gradient Boosting machines:
set_all_stremr_options(fit.package = "h2o", fit.algorithm = "gbm")
# Use `H2O-3` distributed implementation of GLM
set_all_stremr_options(fit.package = "h2o", fit.algorithm = "glm")
# Use Deep Neural Nets:
set_all_stremr_options(fit.package = "h2o", fit.algorithm = "deeplearning")

## End(Not run)

# ----------------------------------------------------------------------
# Fitting different models with different algorithms
# Fine tuning modeling with optional tuning parameters.
# ----------------------------------------------------------------------
## Not run: 
params_TRT = list(fit.package = "h2o", fit.algorithm = "gbm", ntrees = 50,
    learn_rate = 0.05, sample_rate = 0.8, col_sample_rate = 0.8,
    balance_classes = TRUE)
params_CENS = list(fit.package = "speedglm", fit.algorithm = "glm")
params_MONITOR = list(fit.package = "speedglm", fit.algorithm = "glm")
OData <- fitPropensity(OData,
            gform_CENS = gform_CENS, stratify_CENS = stratify_CENS, params_CENS = params_CENS,
            gform_TRT = gform_TRT, params_TRT = params_TRT,
            gform_MONITOR = gform_MONITOR, params_MONITOR = params_MONITOR)

## End(Not run)

# ----------------------------------------------------------------------
# Running TMLE based on the previous fit of the propensity scores.
# Also applying Random Forest to estimate the sequential outcome model
# ----------------------------------------------------------------------
## Not run: 
t.surv <- c(0:5)
Qforms <- rep.int("Q.kplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params_Q = list(fit.package = "h2o", fit.algorithm = "randomForest",
                ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
                col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fitTMLE(OData, t_periods = t.surv, intervened_TRT = "TI.set1",
            Qforms = Qforms, params_Q = params_Q,
            stratifyQ_by_rule = TRUE)

## End(Not run)

## Not run: 
t.surv <- c(0:5)
Qforms <- rep.int("Q.kplus1 ~ CVD + highA1c + N + lastNat1 + TI + TI.tminus1", (max(t.surv)+1))
params_Q = list(fit.package = "h2o", fit.algorithm = "randomForest",
                ntrees = 100, learn_rate = 0.05, sample_rate = 0.8,
                col_sample_rate = 0.8, balance_classes = TRUE)
tmle_est <- fitTMLE(OData, t_periods = t.surv, intervened_TRT = "TI.set1",
            Qforms = Qforms, params_Q = params_Q,
            stratifyQ_by_rule = FALSE)

## End(Not run)

stremr documentation built on May 30, 2017, 6:35 a.m.