Nothing
#' Conformal inference of the sufficient forecasting
#'
#' @param y Response, T by 1 matrix
#' @param X Predictors, p by T matrix
#' @param newX New predictors, a vector contains p entries (or \code{NULL})
#' @param type \code{LM} or \code{LLM} (default = \code{LM})
#' @param K The number of common factors (default = obtained
#' by \code{\link{getK}})
#' @param L The number of predictive indices, L is required to be no greater than
#' K (default = 1)
#' @param alpha Mis-coverage rate
#' @param discretization Hyperparameter in SIR (default = \code{TRUE})
#' @param nslices Hyperparameter in SIR (default = 10)
#'
#' @return A list with components
#' \describe{
#' \item{yhat}{Out-of-sample forecast for \code{newX}; or in-sample forecast
#' for the last observed data point if \code{newX} is \code{NULL}}
#' \item{ci_lower}{Lower bound of conformal interval}
#' \item{ci_upper}{Upper bound of conformal interval}
#' }
#' @export
#' @references
#' Yu, X., Yao, J. and Xue, L. (2022), Nonparametric estimation and conformal inference
#' of the sufficient forecasting with a diverging number of factors,
#' \emph{Journal of Business & Economic Statistics} 40(1), 342–354.
#' @examples
#' utils::data(dataExample,package = "sufficientForecasting")
#' SF.CI(dataExample$y,dataExample$X,type = "LM",alpha = 0.05)
SF.CI <- function(
y, X, newX = NULL, type = "LM", K = "default", L = 1, alpha = 0.1,
discretization = TRUE, nslices = 10){
# default K
if(K == "default"){
K <- getK(y, X, 12)
}
pp <- nrow(X)
TT <- ncol(X)
# warning
## format
if(!is.matrix(X) | !is.matrix(y)){
stop("X and y must be matrices")
}
## X PP by TT
## y TT by 1
if(dim(y)[1] != dim(X)[2]){
stop("X must be a P by T matrix and y must be a T by 1 matrix")
}
## newX, p by 1 vector
if(!is.null(newX)){
if(!is.vector(newX) | length(newX) != pp){
stop("new predictors must be a vector containing p entries")
}
}
## L <= K & int & >= 1
if(L > K | L < 1 | L%%1 != 0){
stop("invalid L: L must be an integar and must be not smaller than 1 and
not greater than K ")
}
## K
if(!is.numeric(K)){
stop("invalid K: try K = 'default'")
}
if(K < 1 | K%%1 != 0){
stop("invalid K: K must be an integar and not smaller than 1")
}
## nslices
maxi <- max(L,2)
if(nslices < maxi | nslices%%1 != 0){
stop("invalid nslices: nslices must be an intergar and >= max{L,2} is required")
}
## alpha
if(alpha >= 1 | alpha <= 0){
stop("invalid alpha value")
}
## type error
if(type != "LM" & type != "LLM"){
stop("type must be one of 'LM' and 'LLM'")
}
## alpha
if(alpha >= 1 | alpha <= 0){
stop("alpha must be (0,1)")
}
# pre
SF_lm_fit = function(yy,Predictor){
T0 = length(yy)
Predictor = as.matrix(Predictor)
xtemp = Predictor
ytemp = yy
beta = solve(t(xtemp)%*% xtemp)%*%(t(xtemp)%*%ytemp)
eps = yy - Predictor %*% beta
return(eps)
}
SF_LLR_fit = function(yy,Predictor){
T0 = length(yy)
Predictor = data.frame(Predictor)
xtemp = Predictor
ytemp = yy
LLR.fit = loess(ytemp~.,data=xtemp,span=0.9, degree=1,
control=loess.control(surface = "direct"))
eps = LLR.fit$residuals
return(eps)
}
hateps <- function(yy, XX)
{
## return the list of residuals
## input: yy: vector of length tt
## XX: matrix of pp by tt
## PCA for factors and loadings
tt = dim(XX)[2]
PCA = eigen( t(XX) %*% XX )
hFF = as.matrix(PCA$vectors[,1:K] * sqrt(tt)) # tt*KK
hBB = XX %*% hFF / tt
## Predictors
hFF.cov = sir.cov(hFF, yy, discretization, nslices)
Phi.h = eigen(hFF.cov)$vectors[,1:L] # KK*LL
Predictor = hFF %*% Phi.h
## return residuals
eps_SF_LML = SF_lm_fit(yy,Predictor)
eps_SF_LLRL = SF_LLR_fit(yy,Predictor)
epsmat = cbind(eps_SF_LML, eps_SF_LLRL)
colnames(epsmat) <- c("SF_LML", 'SF_LLRL')
return(epsmat)
}
pyhat <- function(epsvec)
{
Tlast = length(epsvec)
pvalue = mean(abs(epsvec) >= abs(epsvec)[Tlast])
return(pvalue)
}
SF_conformal <- function(yy, XX)
{
Tlast = length(yy)
y.grid = c(seq(min(yy)-2*sd(yy),max(yy)+2*sd(yy),length=200))
# y-hat
eps.hat = hateps(yy, XX)
yhat = SF.SIR(y = y,X = X,newX = newX, type = type,
K = K, L = L, discretization = discretization,
nslices = nslices)
# CI
p.vec = matrix(NA,length(y.grid),2)
colnames(p.vec) <- c('SF_LML', 'SF_LLRL')
for (i in 1:length(y.grid)){
yy[Tlast] = y.grid[i]
eps.hat.mat = hateps(yy, XX)
p.vec[i,] = apply(eps.hat.mat, 2, pyhat)
}
ci_SF_LML = y.grid[p.vec[,'SF_LML']>alpha]
ci_SF_LLRL = y.grid[p.vec[,'SF_LLRL']>alpha]
ci_lower = c(min(ci_SF_LML), min(ci_SF_LLRL))
ci_upper = c(max(ci_SF_LML), max(ci_SF_LLRL))
resultmat = rbind(yhat, ci_lower, ci_upper)
return(round(resultmat,4))
}
# in-sample
if(is.null(newX)){
## LM
out <- SF_conformal(y,X)
if(type == "LM"){
return(out[,1])
}
## LLM
if(type == "LLM"){
return(out[,2])
}
}
# out-of-sample
if(!is.null(newX)){
## XX pp by tt+1
## y tt+1 by 1
cX <- cbind(X,newX)
cy <- c(y,mean(y))
## LM
out <- SF_conformal(cy,cX)
if(type == "LM"){
return(out[,1])
}
## LLM
if(type == "LLM"){
return(out[,2])
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.