Description Usage Arguments Details Value Author(s) References See Also Examples
This function computes p-value combinations for different permutations of brain imaging data. A voxel's p-value is calculated by performing the one-sample t test for the null hypothesis that its mean contrast over the different subjects is zero.
1 2 3 |
copes |
list of 3D numeric arrays (contrasts maps for each subject). |
mask |
3D logical array, where |
alternative |
direction of the alternative hypothesis ( |
alpha |
significance level. |
B |
number of permutations, including the identity. |
seed |
seed. |
truncFrom |
truncation parameter: values greater than |
truncTo |
truncation parameter: truncated values are set to |
type |
p-value combination among |
r |
parameter for Vovk and Wang's p-value combination. |
rand |
logical, |
A p-value p
is transformed as following.
Edgington: -p
Fisher: -log(p)
Pearson: log(1-p)
Liptak: -qnorm(p)
Cauchy: tan(0.5 - p)/p
Vovk and Wang: - sign(r)p^r
An error message is returned if the transformation produces infinite values.
Truncation parameters should be such that truncTo
is not smaller than truncFrom
.
As Pearson's and Liptak's transformations produce infinite values in 1, for such methods
truncTo
should be strictly smaller than 1.
The significance level alpha
should be in the interval [1/B
, 1).
brainPvals
returns an object of class sumBrain
, containing
statistics
: numeric matrix of p-values, where columns correspond to voxels inside the brain, and rows to permutations.
The first permutation is the identity
mask
: 3D logical array, where TRUE
values correspond to voxels inside the brain
alpha
: significance level
truncFrom
: transformed first truncation parameter
truncTo
: transformed second truncation parameter
Anna Vesely.
Goeman, J. J. and Solari, A. (2011). Multiple testing for exploratory research. Statistical Science, 26(4):584-597.
Hemerik, J. and Goeman, J. J. (2018). False discovery proportion estimation by permutations: confidence for significance analysis of microarrays. JRSS B, 80(1):137-155.
Vesely, A., Finos, L., and Goeman, J. J. (2020). Permutation-based true discovery guarantee by sum tests. Pre-print arXiv:2102.11759.
Permutation statistics for brain imaging using t scores: brainScores
True discovery guarantee for cluster analysis: clusterAnalysis
Suprathreshold clusters: findClusters
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # simulate 20 copes with dimensions 10x10x10
set.seed(42)
copes <- list()
for(i in seq(20)){copes[[i]] <- array(rnorm(10^3, mean = -10, sd = 30), dim=c(10,10,10))}
# cluster map where t scores are grater than 2.8, in absolute value
thr <- 2.8
cl <- findClusters(copes = copes, thr = thr)
# create object of class sumBrain (combination: Cauchy)
res <- brainPvals(copes = copes, alpha = 0.2, seed = 42, type = "cauchy")
res
summary(res)
# confidence bound for the number of true discoveries and the TDP within clusters
out <- clusterAnalysis(res, clusters = cl$clusters)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.