Nothing
#' @title Summarize continuous variables
#'
#' @description `mean_tbl()` calculates summary statistics (i.e., mean,
#' standard deviation, minimum, maximum, and count of non-missing values)
#' for continuous (i.e., interval and ratio-level) variables.
#'
#' @param data A data frame.
#' @param var_stem A character vector with one or more elements, where each
#' represents either a variable stem or the complete name of a variable present
#' in `data`. A variable 'stem' refers to a common naming pattern shared among
#' related variables, typically reflecting repeated measures of the same idea
#' or a group of items assessing a single concept.
#' @param var_input A character string specifying whether the values supplied
#' to `var_stem` should be treated as variable stems (`stem`) or as complete
#' variable names (`name`). By default, this is set to `stem`, so the function
#' searches for variables that begin with each stem provided. Setting this
#' argument to `name` directs the function to look for variables that exactly
#' match the provided names.
#' @param regex_stem A logical value indicating whether to use Perl-compatible
#' regular expressions when searching for variable stems. Default is `FALSE`.
#' @param ignore_stem_case A logical value indicating whether the search for
#' columns matching the supplied `var_stem` is case-insensitive. Default is
#' `FALSE`.
#' @param na_removal A character string that specifies the method for handling
#' missing values: `pairwise` or `listwise`. Defaults to `listwise`.
#' @param only A character string or vector of character strings specifying
#' which summary statistics to return. Defaults to NULL, which includes mean
#' (mean), standard deviation (sd), minimum (min), maximum (max), and count
#' of non-missing values (nobs).
#' @param var_labels An optional named character vector or list used to assign
#' custom labels to variable names. Each element must be named and correspond
#' to a variable included in the returned table. If `var_input` is set to `stem`,
#' and any element is either unnamed or refers to a variable not present in the
#' table, all labels will be ignored and the table will be printed without them.
#' @param ignore An optional named vector or list indicating values to exclude
#' from variables matching specified stems (or names). Defaults to `NULL`,
#' indicating that all values are retained. To specify exclusions for variables
#' identified by `var_stem`, use the corresponding stems or variable names as
#' names in the vector or list. To exclude multiple values from these variables,
#' supply them as a named list.
#'
#' @returns A tibble showing summary statistics for continuous variables.
#'
#' @author Ama Nyame-Mensah
#'
#' @examples
#' sdoh_child_ages <-
#' dplyr::select(sdoh, c(ACS_PCT_AGE_0_4, ACS_PCT_AGE_5_9,
#' ACS_PCT_AGE_10_14, ACS_PCT_AGE_15_17))
#'
#' mean_tbl(data = sdoh_child_ages, var_stem = "ACS_PCT_AGE")
#'
#' mean_tbl(data = sdoh_child_ages,
#' var_stem = "ACS_PCT_AGE",
#' na_removal = "pairwise",
#' var_labels = c(
#' ACS_PCT_AGE_0_4 = "% of population between ages 0-4",
#' ACS_PCT_AGE_5_9 = "% of population between ages 5-9",
#' ACS_PCT_AGE_10_14 = "% of population between ages 10-14",
#' ACS_PCT_AGE_15_17 = "% of population between ages 15-17"))
#'
#' @export
mean_tbl <- function(data,
var_stem,
var_input = "stem",
regex_stem = FALSE,
ignore_stem_case = FALSE,
na_removal = "listwise",
only = NULL,
var_labels = NULL,
ignore = NULL) {
set_call()
on.exit({ .summarytabl$env <- NULL }, add = TRUE)
args <- list(
data = data,
table_type = "mean",
group_func = FALSE,
var_stem = var_stem,
var_label = "var_stem",
var_input = var_input,
valid_var_type = "valid_var_types",
regex_stem = regex_stem,
ignore_stem_case = ignore_stem_case,
na_removal = na_removal,
only = only,
var_labels = var_labels,
ignore = ignore
)
checks <- check_mean_args(args)
check_stems <- checks$var_stem
check_cols <- checks$cols
check_col_labels <- checks$col_labels
check_stem_map <- checks$var_stem_map
check_ignore <- checks$ignore
check_na_removal <- checks$na_removal
check_only <- checks$only
check_table_type <- checks$table_type
data_sub <- checks$df[check_cols]
ignore_result <-
extract_ignore_map(
vars = check_stems,
ignore = check_ignore,
var_stem_map = check_stem_map
)
ignore_map <- ignore_result$ignore_map
if (!is.null(ignore_map)) {
cols_to_modify <- names(ignore_map)
data_sub[cols_to_modify] <- lapply(cols_to_modify, function(col) {
replace_with_na(data_sub[[col]], ignore_map[[col]])
})
}
if (check_na_removal == "listwise") {
data_sub <- stats::na.omit(data_sub)
}
mean_tabl <-
purrr::map(check_cols, ~ generate_mean_tabl(data_sub, .x, check_na_removal)) |>
purrr::reduce(dplyr::bind_rows) |>
dplyr::select(variable, mean, sd, min, max, nobs)
if (!is.null(check_col_labels)) {
mean_tabl <-
mean_tabl |>
dplyr::mutate(variable_label = dplyr::case_match(
variable,
!!!generate_tbl_key(
values_from = names(check_col_labels),
values_to = unname(check_col_labels)),
.default = NA_character_
)) |>
dplyr::relocate(variable_label, .after = variable)
}
mean_tabl <-
drop_only_cols(
data = mean_tabl,
only = check_only,
only_type = only_type(check_table_type)
)
return(tibble::as_tibble(mean_tabl))
}
#' @keywords internal
generate_mean_tabl <- function(data, col, na_removal) {
if (na_removal == "pairwise") {
data <- data[!is.na(data[[col]]), ]
}
result <- data.frame(
variable = col,
mean = mean(data[[col]], na.rm = TRUE),
sd = stats::sd(data[[col]], na.rm = TRUE),
min = min(data[[col]], na.rm = TRUE),
max = max(data[[col]], na.rm = TRUE),
nobs = sum(!is.na(data[[col]]))
)
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.