Nothing
## ----setup--------------------------------------------------------------------
library(summarytabl)
## -----------------------------------------------------------------------------
cat_tbl(data = nlsy, var = "race")
## -----------------------------------------------------------------------------
cat_tbl(data = nlsy,
var = "race",
ignore = "Hispanic",
na.rm = TRUE)
## -----------------------------------------------------------------------------
nlsy_cross_tab <-
nlsy |>
dplyr::select(c(race, bthwht)) |>
dplyr::mutate(bthwht = ifelse(bthwht == 0, "regular_bithweight", "low_birthweight"))
cat_group_tbl(data = nlsy_cross_tab,
row_var = "race",
col_var = "bthwht")
## -----------------------------------------------------------------------------
cat_group_tbl(data = nlsy_cross_tab,
row_var = "race",
col_var = "bthwht",
pivot = "wider")
## -----------------------------------------------------------------------------
# Default: percentages across the full table sum to one
cat_group_tbl(data = nlsy_cross_tab,
row_var = "race",
col_var = "bthwht",
pivot = "wider",
only = "percent")
# Rowwise: percentages sum to one across columns within each row
cat_group_tbl(data = nlsy_cross_tab,
row_var = "race",
col_var = "bthwht",
margins = "rows",
pivot = "wider",
only = "percent")
# Columnwise: percentages within each column sum to one
cat_group_tbl(data = nlsy_cross_tab,
row_var = "race",
col_var = "bthwht",
margins = "columns",
pivot = "wider",
only = "percent")
## -----------------------------------------------------------------------------
cat_group_tbl(data = nlsy_cross_tab,
row_var = "race",
col_var = "bthwht",
na.rm.row_var = TRUE,
ignore = c(race = "Non-Black,Non-Hispanic"))
## -----------------------------------------------------------------------------
cat_group_tbl(data = nlsy_cross_tab,
row_var = "race",
col_var = "bthwht",
na.rm.row_var = TRUE,
ignore = list(race = c("Non-Black,Non-Hispanic", "Hispanic")))
## -----------------------------------------------------------------------------
names(depressive)
## -----------------------------------------------------------------------------
select_tbl(data = depressive, var_stem = "dep")
## -----------------------------------------------------------------------------
select_tbl(data = depressive,
var_stem = c("dep_1", "dep_4", "dep_6"),
var_input = "name")
## -----------------------------------------------------------------------------
select_tbl(data = depressive,
var_stem = "dep",
na_removal = "pairwise")
## -----------------------------------------------------------------------------
select_tbl(data = depressive,
var_stem = "dep",
na_removal = "pairwise",
pivot = "wider")
## -----------------------------------------------------------------------------
dep_recoded <-
depressive |>
dplyr::mutate(
race = dplyr::case_match(.x = race,
1 ~ "Hispanic",
2 ~ "Black",
3 ~ "Non-Black/Non-Hispanic",
.default = NA)
) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::starts_with("dep"),
.fns = ~ dplyr::case_when(.x == 1 ~ "often",
.x == 2 ~ "sometimes",
.x == 3 ~ "hardly ever")
))
## -----------------------------------------------------------------------------
select_group_tbl(data = dep_recoded,
var_stem = "dep",
group = "race")
## -----------------------------------------------------------------------------
select_group_tbl(data = dep_recoded,
var_stem = "dep",
group = "race",
na_removal = "pairwise",
pivot = "wider")
## -----------------------------------------------------------------------------
select_group_tbl(data = dep_recoded,
var_stem = "dep",
group = "race",
na_removal = "pairwise",
pivot = "wider",
ignore = c(dep = "often", race = "Non-Black/Non-Hispanic"))
## -----------------------------------------------------------------------------
# Default: percentages across each variable sum to one
select_group_tbl(data = dep_recoded,
var_stem = "dep",
group = "race",
na_removal = "pairwise",
pivot = "wider")
# Rowwise: for each value of the variable, the percentages
# across all levels of the grouping variable sum to one
select_group_tbl(data = dep_recoded,
var_stem = "dep",
group = "race",
margins = "rows",
na_removal = "pairwise",
pivot = "wider")
# Columnwise: for each level of the grouping variable,
# the percentages across all values of the variable sum
# to one.
select_group_tbl(data = dep_recoded,
var_stem = "dep",
group = "race",
margins = "columns",
na_removal = "pairwise",
pivot = "wider")
## -----------------------------------------------------------------------------
select_group_tbl(data = stem_social_psych,
var_stem = "belong_belong",
group = "_w\\d",
group_type = "pattern")
## -----------------------------------------------------------------------------
select_group_tbl(data = stem_social_psych,
var_stem = "belong_belong",
group = "_w\\d",
group_type = "pattern",
group_name = "wave")
## -----------------------------------------------------------------------------
select_group_tbl(data = stem_social_psych,
var_stem = "belong_belong",
group = "_w\\d",
group_type = "pattern",
group_name = "wave",
var_labels = c(
belong_belongStem_w1 = "I feel like I belong in STEM (wave 1)",
belong_belongStem_w2 = "I feel like I belong in STEM (wave 2)"
))
## -----------------------------------------------------------------------------
# Default: counts and percentages
select_group_tbl(data = stem_social_psych,
var_stem = "belong_belong",
group = "_w\\d",
group_type = "pattern",
group_name = "wave")
# Counts only
select_group_tbl(data = stem_social_psych,
var_stem = "belong_belong",
group = "_w\\d",
group_type = "pattern",
group_name = "wave",
only = "count")
# Percentages only
select_group_tbl(data = stem_social_psych,
var_stem = "belong_belong",
group = "_w\\d",
group_type = "pattern",
group_name = "wave",
only = "percent")
## -----------------------------------------------------------------------------
mean_tbl(data = sdoh, var_stem = "HHC_PCT")
## -----------------------------------------------------------------------------
mean_tbl(
data = sdoh,
var_stem = c("HHC_PCT_HHA_PHYS_THERAPY",
"HHC_PCT_HHA_OCC_THERAPY",
"HHC_PCT_HHA_SPEECH"),
var_input = "name"
)
## -----------------------------------------------------------------------------
# Default listwise removal
mean_tbl(data = sdoh, var_stem = "HHC_PCT")
# Pairwise removal
mean_tbl(data = sdoh,
var_stem = "HHC_PCT",
na_removal = "pairwise")
## -----------------------------------------------------------------------------
mean_tbl(data = sdoh,
var_stem = "HHC_PCT",
na_removal = "pairwise",
var_labels = c(
HHC_PCT_HHA_NURSING="% agencies offering nursing care services",
HHC_PCT_HHA_PHYS_THERAPY="% agencies offering physical therapy services",
HHC_PCT_HHA_OCC_THERAPY="% agencies offering occupational therapy services",
HHC_PCT_HHA_SPEECH="% agencies offering speech pathology services",
HHC_PCT_HHA_MEDICAL="% agencies offering medical social services",
HHC_PCT_HHA_AIDE="% agencies offering home health aide services"
))
## -----------------------------------------------------------------------------
mean_group_tbl(data = sdoh,
var_stem = "HHC_PCT",
group = "REGION",
group_type = "variable")
## -----------------------------------------------------------------------------
# Default listwise removal
mean_group_tbl(data = sdoh,
var_stem = "HHC_PCT",
group = "REGION",
ignore = c(HHC_PCT = 0, REGION = "Northeast"))
# Pairwise removal
mean_group_tbl(data = sdoh,
var_stem = "HHC_PCT",
group = "REGION",
na_removal = "pairwise",
ignore = c(HHC_PCT = 0, REGION = "Northeast"))
# Pairwise removal excluding several values from the same stem
# or group variable.
mean_group_tbl(data = sdoh,
var_stem = "HHC_PCT",
group = "REGION",
na_removal = "pairwise",
ignore = list(HHC_PCT = 0, REGION = c("Northeast", "South")))
## -----------------------------------------------------------------------------
set.seed(0803)
symptoms_data <-
data.frame(
symptoms_t1 = sample(c(0:10, -999), replace = TRUE, size = 50),
symptoms_t2 = sample(c(NA, 0:10, -999), replace = TRUE, size = 50),
symptoms_t3 = sample(c(NA, 0:10, -999), replace = TRUE, size = 50)
)
mean_group_tbl(data = symptoms_data,
var_stem = "symptoms",
group = "_t\\d",
group_type = "pattern",
ignore = c(symptoms = -999))
## -----------------------------------------------------------------------------
mean_group_tbl(data = symptoms_data,
var_stem = "symptoms",
group = "_t\\d",
group_type = "pattern",
group_name = "time_point",
ignore = c(symptoms = -999),
var_labels = c(symptoms_t1 = "# of symptoms at baseline",
symptoms_t2 = "# of symptoms at 6 months follow up",
symptoms_t3 = "# of symptoms at one-year follow up"))
## -----------------------------------------------------------------------------
# Default: all summary statistics returned
# (mean, sd, min, max, nobs)
mean_group_tbl(data = symptoms_data,
var_stem = "symptoms",
group = "_t\\d",
group_type = "pattern",
group_name = "time_point",
ignore = c(symptoms = -999))
# Means and non-missing observations only
mean_group_tbl(data = symptoms_data,
var_stem = "symptoms",
group = "_t\\d",
group_type = "pattern",
group_name = "time_point",
ignore = c(symptoms = -999),
only = c("mean", "nobs"))
# Means and standard deviations only
mean_group_tbl(data = symptoms_data,
var_stem = "symptoms",
group = "_t\\d",
group_type = "pattern",
group_name = "time_point",
ignore = c(symptoms = -999),
only = c("mean", "sd"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.