Nothing
#' Cross-validates and compares Cox Proportionate Hazards and Survival Random Forest models
#' @description
#' The function performs a repeated nested cross-validation for
#' 1) Cox-PH (survival package, survival::coxph) or Cox-Lasso (glmnet package, glmnet::cox.fit)
#' 2) Survival Random Forest (randomForestSRC::rfsrc), or its ensemble with the Cox model (if use_ensemble =TRUE)
#'
#' The same random seed for the train/test splits are used for all models to aid fair comparison;
#' and the performance metrics are computed for the tree models including Harrel's c-index,
#' time-dependent AUC-ROC, time-dependent Brier Score, and calibration slope.
#' The statistical significance of the performance differences between Cox-PH and Cox-SRF Ensemble is tested and reported.
#'
#' The function is designed to help with the model selection by quantifying the loss of predictive
#' performance (if any) if Cox-PH is used instead of a more complex model such as SRF
#' which can capture non-linear and interaction terms, as well as non-proportionate hazards.
#' The difference in performance of the Ensembled Cox and SRF and the baseline Cox-PH
#' can be viewed as quantification of the non-linear and cross-terms contribution to
#' the predictive power of the supplied predictors.
#'
#' The function is a wrapper for survcompare2(), for comparison of the CoxPH and SRF models, and
#' an alternative way to do the same analysis is to run survcox_cv() and survsrf_cv(), then using survcompare2()
#'
#' @importFrom survival Surv
#' @importFrom timeROC timeROC
#' @importFrom stats as.formula
#' @importFrom stats quantile
#' @importFrom stats runif
#' @importFrom stats coef
#' @importFrom stats binomial
#' @importFrom stats poisson
#' @importFrom stats predict
#' @importFrom stats sd
#' @importFrom stats approxfun
#' @importFrom stats median
#' @importFrom stats complete.cases
#' @importFrom randomForestSRC rfsrc
#' @importFrom survival coxph
#' @param df_train training data, a data frame with "time" and "event" columns to define the survival outcome
#' @param predict_factors list of column names to be used as predictors
#' @param fixed_time prediction time of interest. If NULL, 0.90th quantile of event times is used
#' @param randomseed random seed for replication
#' @param useCoxLasso TRUE / FALSE, for whether to use regularized version of the Cox model, FALSE is default
#' @param outer_cv k in k-fold CV
#' @param inner_cv k in k-fold CV for internal CV to tune survival random forest hyper-parameters
#' @param tuningparams list of tuning parameters for random forest: 1) NULL for using a default tuning grid, or 2) a list("mtry"=c(...), "nodedepth" = c(...), "nodesize" = c(...))
#' @param return_models TRUE/FALSE to return the trained models; default is FALSE, only performance is returned
#' @param repeat_cv if NULL, runs once, otherwise repeats several times with different random split for CV, reports average of all
#' @param ml this is currently for Survival Random Forest only ("SRF")
#' @param use_ensemble TRUE/FALSE for whether to train SRF on its own, apart from the CoxPH->SRF ensemble. Default is FALSE as there is not much information in SRF itself compared to the ensembled version.
#' @param max_grid_size number of random grid searches for model tuning
#' @param suppresswarn TRUE/FALSE, TRUE by default
#' @return outcome - cross-validation results for CoxPH, SRF, and an object containing the comparison results
#' @examples
#' \dontshow{rfcores_old <- options()$rf.cores; options(rf.cores=1)}
#' df <-simulate_nonlinear(100)
#' predictors <- names(df)[1:4]
#' srf_params <- list("mtry" = c(2), "nodedepth"=c(25), "nodesize" =c(15))
#' mysurvcomp <- survcompare(df, predictors, tuningparams = srf_params, max_grid_size = 1)
#' summary(mysurvcomp)
#' \dontshow{options(rf.cores=rfcores_old)}
#' @export
survcompare <- function(df_train,
predict_factors,
fixed_time = NaN,
randomseed = NaN,
useCoxLasso = FALSE,
outer_cv = 3,
inner_cv = 3,
tuningparams = list(),
return_models = FALSE,
repeat_cv = 2,
ml = "SRF",
use_ensemble = FALSE,
max_grid_size = 10,
suppresswarn = TRUE) {
Call <- match.call()
inputs <- list(
df_train,
predict_factors,
fixed_time,
outer_cv,
inner_cv,
repeat_cv,
randomseed,
return_models,
tuningparams,
useCoxLasso
)
inputclass <-
list(
df_train = "data.frame",
predict_factors = "character",
fixed_time = "numeric",
outer_cv = "numeric",
inner_cv = "numeric",
repeat_cv = "numeric",
randomseed = "numeric",
return_models = "logical",
tuningparams = "list",
useCoxLasso = "logical"
)
cp <- check_call(inputs, inputclass, Call)
if (cp$anyerror)
stop (paste(cp$msg[cp$msg != ""], sep = ""))
if (sum(is.na(df_train[c("time", "event", predict_factors)])) > 0) {
stop("Missing data can not be handled. Please impute first.")
}
if (is.nan(randomseed)) {
randomseed <- round(stats::runif(1) * 1e9, 0) + 1
}
if (is.nan(fixed_time)) {
fixed_time <- quantile(df_train[df_train$event == 1, "time"], 0.9, na.rm = TRUE)
}
#SRF_ensemble or DeepHit_ensemble
ensemble_name <- paste(ml, "ensemble", sep="_")
if (suppresswarn){ user_warn <-options()$warn; options(warn=-1)}
# CoxPH
cv1 <- survcox_cv(
df = df_train,
predict.factors = predict_factors,
fixed_time = fixed_time ,
outer_cv = outer_cv,
randomseed = randomseed,
useCoxLasso = useCoxLasso,
return_models = return_models,
repeat_cv = repeat_cv
)
if(use_ensemble){
cv2 <- survsrfens_cv(
df = df_train,
predict.factors = predict_factors,
fixed_time = fixed_time,
outer_cv = outer_cv,
inner_cv = inner_cv,
randomseed = randomseed,
return_models = return_models,
tuningparams = tuningparams,
useCoxLasso = useCoxLasso,
repeat_cv = repeat_cv,
max_grid_size = max_grid_size
)
} else{
cv2 <- survsrf_cv(
df = df_train,
predict.factors = predict_factors,
fixed_time = fixed_time,
outer_cv = outer_cv,
inner_cv = inner_cv,
repeat_cv = repeat_cv,
randomseed = randomseed,
return_models = return_models,
tuningparams = tuningparams,
max_grid_size = max_grid_size)
}
if (suppresswarn){ options(warn=user_warn)}
output<- survcompare2(cv1, cv2)
output$cv1 <- cv1
output$cv2 <- cv2
summary.survcompare(output)
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.