Description Usage Arguments Details Value Author(s) References Examples
This function is used to obtain nonparametric estimates of the transition probabilities in the illness-death model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
formula |
A |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
method |
The method used to compute the transition probabilities.
Possible options are |
conf |
Provides pointwise confidence bands. Defaults to |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
conf.type |
Method to compute the confidence intervals. Depends on the
choice of the estimation method of the transition probabilities. For
Aalen-Johansen type estimators ( |
n.boot |
The number of bootstrap replicates to compute the variance of the non-Markovian estimator. Default is 199. |
data |
A data.frame including at least four columns named
|
z.value |
The value of the covariate on the right hand side of formula at which the transition probabilities are computed. For quantitative covariates, i.e. of class integer and numeric. |
bw |
A single numeric value to compute a kernel density bandwidth.
Use |
window |
A character string specifying the desired kernel.
See details below for possible options. Defaults to |
method.weights |
A character string specifying the desired weights method.
Possible options are |
cluster |
A logical value. If |
ncores |
An integer value specifying the number of cores to be used in
the parallelized procedure. If |
na.rm |
A logical value indicating whether NA values should be stripped in the computation. |
Possible options for argument window are "gaussian"
,
"epanechnikov"
, "tricube"
, "boxcar"
,
"triangular"
, "quartic"
or "cosine"
. The LIDA estimator
was labelled according to the acronym of the Lifetime Data Analysis journal
in which the estimator was described for the first time (Meira-Machado,
U?a-?lvarez and Cadarso-Su?rez, 2006).
Possible methods are:
AJ
Aalen-Johansen estimator
PAJ
Presmoothed Aalen-Johansen estimator
LIDA
LIDA estimator
LM
Landmark approach estimator
PLM
Presmoothed Landmark approach estimator
LMAJ
Landmark approach Aalen-Johansen estimator
PLDAJ
Presmoothed Landmark approach Aalen-Johansen estimator
tpIPCW
Inverse Probability of Censoring Weighting for Transition Probabilities
tpBreslow
Breslow method
An object of class "survIDM"
and one of the following
five classes: "AJ"
, "LIDA"
, "LM"
, "PLM"
,
"LMAJ"
, "PLMAJ"
, "PAJ"
,
"tpIPCW"
and "tpBreslow"
. Objects are implemented as a list with elements:
est |
data.frame with estimates of the transition probabilities. |
CI |
data.frame with the confidence intervals of the transition probabilities. |
conf.level |
Level of confidence. |
s |
The first time for obtaining estimates for the transition probabilities. |
t |
The time for obtaining the estimates of transition probabilities. |
conf |
logical; if |
conf.type |
Type of the confidence interval. |
callp |
The expression of the estimated probability. |
Nlevels |
The number of levels of the covariate. Provides important information when the covariate at the right hand side of formula is of class factor. |
levels |
The levels of the qualitative covariate (if it is of class factor) on the right hand side of formula. |
formula |
A formula object. |
call |
A call object. |
Luis Meira-Machado, Marta Sestelo and Gustavo Soutinho.
Aalen O. O., Johansen S. (1978) An Empirical Transition Matrix for Nonhomogeneous Markov Chains Based on Censored Observations. Scandinavian Journal of Statistics 5(3), 141–150.
Meira-Machado L. F., de Una-Alvarez J. and Cadarso-Suarez C. (2006). Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal 12(3), 325–344.
de Una-Alvarez J. and Meira-Machado L. (2015). Nonparametric estimation of transition probabilities in a non-Markov illness-death model: a comparative study. Biometrics 71, 364–375.
Cox, DR (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 34, 187-200.
Breslow, N. (1972). Discussion of paper by dr cox. Journal of Royal Statistical Society, Series B 34, 216-217.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | ## Not run:
# Aalen-Johansen
res <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 0,
method = "AJ", conf = FALSE, data = colonIDM)
summary(res, time=365*1:6)
plot(res)
# Transition Probabilities Pij(t)=Pij(365,t)
# LIDA
res1 <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "LIDA", conf = FALSE, data = colonIDM)
summary(res1, time=365*1:6)
plot(res1)
plot(res1, trans="01", ylim=c(0,0.15))
# Landmark (LM)
res2 <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "LM", conf = FALSE, data = colonIDM)
summary(res2, time=365*1:6)
plot(res2)
# Presmoothed LM
res3 <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "PLM", conf = TRUE, data = colonIDM)
summary(res3, time=365*1:6)
autoplot(res3, interactive = TRUE)
# Conditional transition probabilities
# With factor
res4 <- tprob(survIDM(time1, event1, Stime, event) ~ factor(sex), s = 365,
method = "AJ", conf = TRUE, data = colonIDM)
summary(res4, time=365*1:6)
plot(res4, trans="02", ylim=c(0,0.5))
res5 <- tprob(survIDM(time1, event1, Stime, event) ~ rx, s =365,
method = "breslow", z.value='Lev', conf = TRUE, data =colonIDM)
summary(res5, time=365*1:6)
plot(res5,trans="02", ylim=c(0,0.5))
# with continuous covariate (IPCW and Breslow Method)
res6 <- tprob(survIDM(time1, event1, Stime, event) ~ age, s = 365,
method = "IPCW", z.value = 48, conf = FALSE, data = colonIDM,
bw = "dpik", window = "gaussian", method.weights = "NW")
summary(res6, time=365*1:6)
plot(res6)
res7 <- tprob(survIDM(time1, event1, Stime, event) ~ age, s =365,
method = "breslow", z.value=60, conf = FALSE, data =colonIDM)
summary(res7, time=365*1:6)
autoplot(res7, interactive=TRUE)
res8 <- tprob(survIDM(time1, event1, Stime, event) ~ age, s =365,
method = "breslow", conf.type='bootstrap', z.value=60, conf = TRUE, data =colonIDM)
summary(res8, time=365*1:6)
plot(res8)
res9 <- tprob(survIDM(time1, event1, Stime, event) ~ rx, s =365,
method = "breslow", conf.type='bootstrap', conf = TRUE, data =colonIDM)
summary(res9, time=365*1:6)
plot(res9, trans="02", ylim=c(0,0.5))
# more than a covariate (Breslow Method)
res10<- tprob(survIDM(time1, event1, Stime, event) ~ nodes + factor(rx), s =365,
method = "breslow", conf = TRUE, data =colonIDM)
summary(res10,t=365*1:5)
autoplot(res10)
res11<- tprob(survIDM(time1, event1, Stime, event) ~ nodes + factor(rx), s =365,
method = "breslow", z.value=c(10,'Obs'), conf = TRUE, data =colonIDM)
summary(res11,t=365*1:5)
autoplot(res11)
# more than a covariate for Non Linear Models (Breslow Method)
res12<- tprob(survIDM(time1, event1, Stime, event) ~ pspline(age)+ nodes + factor(rx), s =365,
method = "breslow", conf = TRUE, data =colonIDM)
summary(res12,t=365*1:5)
autoplot(res12)
# Confidence intervals
res13 <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "AJ", conf = TRUE, n.boot = 5, conf.level = 0.95,
conf.type = "log", data = colonIDM)
summary(res13, time=365*1:7)
autoplot(res13)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.