Multiple Correspondence Analysis

Share:

Description

A fast procedure for computing multiple correspondence analysis.

Usage

1
fast_mca(dat, nfac = FALSE)

Arguments

dat

Input data: has to be a data frame (with any number of columns).

nfac

Logical indicating whether the number of factors (i.e. the number of columns in dat) is a divisor for the eigenvalues (principal inertias) and the coordinates.

Value

A list with components:

val

The eigenvalues or principal inertias, indicating how much each latent axis explains.

pos

The coordinates of all levels.

References

Greenacre, M. (2007) Correspondence analysis in practice, Second edition. Boca Raton: Chapman and Hall/CRC.

Examples

1
2
3
4
SndT_Fra <- read.table(system.file("extdata", "SndT_Fra.txt", package = "svs"),
   header = TRUE, sep = "\t", quote = "\"", encoding = "UTF-8")
mca.SndT_Fra <- fast_mca(SndT_Fra)
mca.SndT_Fra

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.