Description Usage Arguments Value Author(s) References See Also Examples
View source: R/parMIEstimate.R
A function that computes the mutual information between all pairs of rows (or
specified ones) of matrix counts
using 10 different estimation methods.
1 2 3 4 5 |
counts |
a numeric matrix (for the reconstruction of gene regulatory networks, genes on rows and samples on columns). |
method |
a character string indicating which estimate is to be computed.
One of |
unit |
the unit in which mutual information is measured. One of |
nchips |
the number of cpu's to be used for making the parallel calculation. |
priorHyperParam |
the prior distribution type for the Bayes estimation. One of |
shrinkageTarget |
shrinkage target frequencies. If not specified (default) it is estimated in a James-Stein-type fashion (uniform distribution). |
k |
the number of nearest neighbors to consider for the estimate. |
tfList |
the character vector specifying which genes from the rownames of the |
boot |
logical ( |
The parMIEstimate
function returns a square matrix of dimension equal to
the number of rows (number of genes) of the counts
matrix, or a number
of rows equal to the length of tfList
.
Luciano Garofano lucianogarofano88@gmail.com, Stefano Maria Pagnotta, Michele Ceccarelli
Paniski L. (2003). Estimation of Entropy and Mutual Information. Neural Computation, vol. 15 no. 6 pp. 1191-1253.
Meyer P.E., Laffitte F., Bontempi G. (2008). minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinformatics 9:461.
Antos A., Kontoyiannis I. (2001). Convergence properties of functional estimates for discrete distributions. Random Structures and Algorithms, vol. 19 pp. 163-193.
Strong S., Koberle R., de Ruyter van Steveninck R.R., Bialek W. (1998). Entropy and Information in Neural Spike Trains. Physical Review Letters, vol. 80 pp. 197-202.
Miller G.A. (1955). Note on the bias of information estimates. Information Theory in Psychology, II-B pp. 95-100.
Jeffreys H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London, vol. 186 no. 1007 pp. 453-461.
Krichevsky R.E., Trofimov V.K. (1981). The performance of universal encoding. IEEE Transactions on Information Theory, vol. 27 pp. 199-207.
Holste D., Hertzel H. (1998). Bayes' estimators of generalized entropies. Journal of Physics A, vol. 31 pp. 2551-2566.
Perks W. (1947). Some observations on inverse probability including a new indifference rule. Journal of the Institute of Actuaries, vol. 73 pp. 285-334.
Schurmann T., Grassberg P. (1996). Entropy estimation of symbol sequences. Chaos, vol. 6 pp. 414-427.
Trybula S. (1958). Some problems of simultaneous minimax estimation. The Annals of Mathematical Statistics, vol. 29 pp. 245-253.
Chao A., Shen T.J. (2003). Nonparametric estimation of Shannon's index diversity when there are unseen species. Environmental and Ecological Statistics, vol. 10 pp. 429-443.
James W., Stein C. (1961). Estimation with Quadratic Loss. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 pp. 361-379.
Moon Y., Rajagopalan B., Lall U. (1995). Estimation of mutual information using kernel density estimators. Physical Review E, vol. 52 n. 3 pp. 2318-2321.
Kraskov A., Stogbauer H., Grassberger P. (2004.) Estimating mutual information. Physical Review E, vol 69.
Sales G., Romualdi C. (2011). parmigene - a parallel R package for mutual information estimation and gene network reconstruction. Bioinformatics.
1 2 3 4 5 6 7 8 9 10 11 12 13 | simData <- simulatedData(p = 5, n = 10, mu = 100, sigma = 0.25,
ppower = 0.73, noise = FALSE)
counts <- simData$counts
adjMat <- simData$adjMat
miML <- parMIEstimate(counts, method = "ML", unit = "nat", nchips = 2)
miBJ <- parMIEstimate(counts, method = "Bayes", unit = "nat",
nchips = 2, priorHyperParam = "Jeffreys")
miSH <- parMIEstimate(counts, method = "Shrink", unit = "nat",
nchips = 2)
miKD <- parMIEstimate(counts, method = "KD", nchips = 2)
miKNN <- parMIEstimate(counts, method = "KNN", unit = "nat", k = 3,
nchips = 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.