Nothing
# Check whether classes that corresponds with spatial clusters
# are retained.
set.seed(1)
# Create a dataset with separate clusters based on numeric data
# and a classifying variable that coincides with the cluster
# locations
# centers
centers <- list(
cl1 = list(x=-10, y= -10,col="black")
, cl2 = list(x=-10, y= 10,col="red")
, cl3 = list(x= 10, y= -10,col="blue")
, cl4 = list(x= 10, y= 10,col="green")
)
# create n records per cluster
n <- 100
L <- lapply(centers, function(center){
data.frame( x = rnorm(n=n, mean=center$x)
, y = rnorm(n=n, mean=center$y)
, col = center$col)
})
clusters <- do.call("rbind",L)
clusters1 <- clusters[sample(4*n),,drop=FALSE]
# synthesize de whole dataset
synth_clusters <- synthesize(clusters)
synth_clusters1 <- synthesize(clusters1)
real_mean <- aggregate(clusters[1:2], by = clusters[3], mean)
synth_mean <- aggregate(synth_clusters[1:2], by=synth_clusters[3], mean)
synth_mean1 <- aggregate(synth_clusters1[1:2], by=synth_clusters1[3], mean)
expect_equivalent(synth_mean, real_mean, tolerance=0.25)
expect_equivalent(synth_mean1, real_mean, tolerance=0.25)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.