mc_vignette: List with multi-concentration data for the vignette

mc_vignetteR Documentation

List with multi-concentration data for the vignette

Description

This dataset is a list with 6 data.tables (mc0,mc1,mc2,mc3,mc4,mc5).

Usage

mc_vignette

Format

  1. mc0 A data frame with 78 rows and 18 columns containing level 0 formatted raw data.

    spid

    Sample ID

    chid

    Unique chemical ID number for tcpl

    casn

    Chemical Abstract Service(CAS) number

    chnm

    Chemical name

    dsstox_substance_id

    Chemical-specific DTXSID

    code

    CAS number compressed into numeric string

    acid

    Assay Component ID

    acnm

    Assay Component Name

    m0id

    Level 0 (mc0) ID

    apid

    Assay plate ID

    rowi

    Row Index

    coli

    Column Index

    wllt

    Well Type

    wllq

    Well Quality (0 or 1)

    conc

    Concentration in micromolar

    rval

    Raw assay component readout value

    srcf

    Source file containing the raw data

    conc_unit

    Concentration Units

  2. mc1 A data frame with 78 rows and 21 columns containing level 1 replicate and concentration level indicated data.

    spid

    Sample ID

    chid

    Unique chemical ID number for tcpl

    casn

    Chemical Abstract Service(CAS) number

    chnm

    Chemical name

    dsstox_substance_id

    Chemical-specific DTXSID

    code

    CAS number compressed into numeric string

    acid

    Assay Component ID

    acnm

    Assay Component Name

    m0id

    Level 0 (mc0) ID

    m1id

    Level 1 (mc1) ID

    apid

    Assay plate ID

    rowi

    Row Index

    coli

    Column Index

    wllt

    Well Type

    wllq

    Well Quality (0 or 1)

    conc

    Concentration in micromolar

    rval

    Raw assay component readout value

    cndx

    Concentration index defined by ranking the unique concentrations, with the lowest concentration starting at 1.

    repi

    Temporary replicate ID is defined, the data are scanned from top to bottom and increment the replicate index every time a replicate ID is duplicated

    srcf

    Source file containing the raw data

    conc_unit

    Concentration Units

  3. mc2 A data frame with 78 rows and 20 columns containing level 2 assay component-specific corrections.

    spid

    Sample ID

    chid

    Unique chemical ID number for tcpl

    casn

    Chemical Abstract Service(CAS) number

    chnm

    Chemical name

    dsstox_substance_id

    Chemical-specific DTXSID

    code

    CAS number compressed into numeric string

    acid

    Assay Component ID

    acnm

    Assay Component Name

    m0id

    Level 0 (mc0) ID

    m1id

    Level 1 (mc1) ID

    m2id

    Level 2 (mc2) ID

    apid

    Assay plate ID

    rowi

    Row Index

    coli

    Column Index

    wllt

    Well Type

    conc

    Concentration in micromolar

    cval

    Corrected Value

    cndx

    Concentration index defined by ranking the unique concentrations, with the lowest concentration starting at 1.

    repi

    Temporary replicate ID is defined, the data are scanned from top to bottom and increment the replicate index every time a replicate ID is duplicated

    conc_unit

    Concentration Units

  4. mc3 A data frame with 78 rows and 22 columns containing level 3 assay endpoint normalized data.

    spid

    Sample ID

    chid

    Unique chemical ID number for tcpl

    casn

    Chemical Abstract Service(CAS) number

    chnm

    Chemical name

    dsstox_substance_id

    Chemical-specific DTXSID

    code

    CAS number compressed into numeric string

    aeid

    Assay Component Endpoint ID

    aenm

    Assay endpoint name (i.e., assay_component_endpoint_name)

    m0id

    Level 0 (mc0) ID

    m1id

    Level 1 (mc1) ID

    m2id

    Level 2 (mc2) ID

    m3id

    Level 3 (mc3) ID

    logc

    Log base 10 concentration

    resp

    Normalized response value

    cndx

    Concentration index defined by ranking the unique concentrations, with the lowest concentration starting at 1.

    wllt

    Well Type

    apid

    Assay plate ID

    rowi

    Row Index

    coli

    Column Index

    repi

    Temporary replicate ID is defined, the data are scanned from top to bottom and increment the replicate index every time a replicate ID is duplicated

    resp_unit

    Response Units

    conc_unit

    Concentration Units

  5. mc4 A data frame with 5 rows and 149 columns containing level 4 concentration-response fitting data (all fits).

    spid

    Sample ID

    chid

    Unique chemical ID number for tcpl

    casn

    Chemical Abstract Service(CAS) number

    chnm

    Chemical name

    dsstox_substance_id

    Chemical-specific DTXSID

    code

    CAS number compressed into numeric string

    aeid

    Assay Component Endpoint ID

    aenm

    Assay endpoint name (i.e., assay_component_endpoint_name)

    m4id

    Level 4 (mc4) ID

    bmad

    The median absolute deviation of all treatment wells (default option) or blank wells

    resp_max

    Maximum observed response

    resp_min

    Minimum observed response

    max_mean

    Maximum mean response

    max_mean_conc

    Concentration of the maximum mean response

    max_med

    Maximum median response

    max_med_conc

    Concentration of the maximum median response

    logc_max

    Maximum concentration on the log scale

    logc_min

    Minimum concentration on the log scale

    nconc

    The total number of concentration groups

    npts

    Total number of observed responses (i.e. data points in the concentration series)

    nrep

    Number of replicates in concentration groups

    nmed_gtbl

    The number of median responses greater than 3BMAD

    cnst_success

    Success indicator for the Constant model; 1 if the optimization was successful, otherwise 0

    cnst_aic

    Akaike Information Criteria (AIC) for the Constant model

    cnst_rme

    Root mean square error for the Constant model

    cnst_er

    Error term for the Constant model

    hill_success

    Success indicator for the Hill model; 1 if the optimization was successful, otherwise 0

    hill_aic

    Akaike Information Criteria (AIC) for the Hill model

    hill_cov

    Success indicator for the Hill model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    hill_rme

    Root mean square erro for the Hill model

    hill_tp

    The top parameter indicating the maximal estimated response

    hill_ga

    The gain parameter for the Hill model, gain AC50

    hill_p

    The power parameter for the Hill model

    hill_er

    Error term for the Hill model

    hill_tp_sd

    Standard deviation of the Hill model top parameter

    hill_ga_sd

    Standard deviation of the Hill model gain parameter

    hill_p_sd

    Standard deviation of the Hill model power parameter

    hill_er_sd

    Standard deviation of the Hill model error term

    hill_top

    The maximal response on the resulting Hill model fit

    hill_ac50

    Concentration at 50% of the maximal response on the Hill model fit

    gnls_success

    Success indicator for the Gain-loss model; 1 if the optimization was successful, otherwise 0

    gnls_aic

    Akaike Information Criteria (AIC) for the Gain-loss model

    gnls_cov

    Success indicator for the Gain-loss model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    gnls_rme

    Root mean square erro for the Gain-loss model

    gnls_tp

    The top parameter indicating the maximal estimated response

    gnls_ga

    The gain parameter for the Gain-loss model, gain AC50

    gnls_p

    The gain power parameter for the Gain-loss model

    gnls_la

    The loss parameter for the Gain-loss model, loss AC50

    gnls_q

    The loss power parameter for the Gain-loss model

    gnls_er

    Error term for the Gain-loss model

    gnls_tp_sd

    Standard deviation of the Gain-loss model top parameter

    gnls_ga_sd

    Standard deviation of the Gain-loss model gain parameter

    gnls_p_sd

    Standard deviation of the Gain-loss model gain power parameter

    gnls_la_sd

    Standard deviation of the Gain-loss model loss parameter

    gnls_q_sd

    Standard deviation of the Gain-loss model loss power parameter

    gnls_er_sd

    Standard deviation of the Gain-loss model error term

    gnls_top

    The maximal response on the resulting Gain-loss model fit

    gnls_ac50

    Concentration at 50% of the maximal response on the Gain-loss model fit, gain AC50

    gnls_ac50_loss

    Concentration at 50% of the maximal response on the Gain-loss model fit, loss AC50

    poly1_success

    Success indicator for the Polynomial 1 model; 1 if the optimization was successful, otherwise 0

    poly1_aic

    Akaike Information Criteria (AIC) for the Polynomial 1 model

    poly1_cov

    Success indicator for the Polynomial 1 model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    poly1_rme

    Root mean square erro for the Polynomial 1 model

    poly1_a

    The y-scale parameter for the Polynomial 1 model

    poly1_er

    Error term for the Polynomial 1 model

    poly1_a_sd

    Standard deviation of the Polynomial 1 model y-scale parameter

    poly1_er_sd

    Standard deviation of the Polynomial 1 model error term

    poly1_top

    The maximal response on the resulting Polynomial 1 model fit

    poly1_ac50

    Concentration at 50% of the maximal response on the Polynomial 1 model fit

    poly2_success

    Success indicator for the Polynomial 2 model; 1 if the optimization was successful, otherwise 0

    poly2_aic

    Akaike Information Criteria (AIC) for the Polynomial 2 model

    poly2_cov

    Success indicator for the Polynomial 2 model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    poly2_rme

    Root mean square erro for the Polynomial 2 model

    poly2_a

    The y-scale parameter for the Polynomial 2 model

    poly2_b

    The x-scale parameter for the Polynomial 2 model

    poly2_er

    Error term for the Polynomial 2 model

    poly2_a_sd

    Standard deviation of the Polynomial 2 model y-scale parameter

    poly2_b_sd

    Standard deviation of the Polynomial 2 model x-scale parameter

    poly2_er_sd

    Standard deviation of the Polynomial 2 model error term

    poly2_top

    The maximal response on the resulting Polynomial 2 model fit

    poly2_ac50

    Concentration at 50% of the maximal response on the Polynomial 2 model fit

    pow_success

    Success indicator for the Power model; 1 if the optimization was successful, otherwise 0

    pow_aic

    Akaike Information Criteria (AIC) for the Power model

    pow_cov

    Success indicator for the Power model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    pow_rme

    Root mean square erro for the Power model

    pow_a

    The y-scale parameter for the Power model

    pow_p

    The power parameter for the Power model

    pow_er

    Error term for the Power model

    pow_a_sd

    Standard deviation of the Power model y-scale parameter

    pow_p_sd

    Standard deviation of the Power model power parameter

    pow_er_sd

    Standard deviation of the Power model error term

    pow_top

    The maximal response on the resulting Power model fit

    pow_ac50

    Concentration at 50% of the maximal response on the Power model fit

    exp2_success

    Success indicator for the Exponential 2 model; 1 if the optimization was successful, otherwise 0

    exp2_aic

    Akaike Information Criteria (AIC) for the Exponential 2 model

    exp2_cov

    Success indicator for the Exponential 2 model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    exp2_rme

    Root mean square erro for the Exponential 2 model

    exp2_a

    The y-scale parameter for the Exponential 2 model

    exp2_b

    The x-scale parameter for the Exponential 2 model

    exp2_er

    Error term for the Exponential 2 model

    exp2_a_sd

    Standard deviation of the Exponential 2 model y-scale parameter

    exp2_b_sd

    Standard deviation of the Exponential 2 model x-scale parameter

    exp2_er_sd

    Standard deviation of the Exponential 2 model error term

    exp2_top

    The maximal response on the resulting Exponential 2 model fit

    exp2_ac50

    Concentration at 50% of the maximal response on the Exponential 2 model fit

    exp3_success

    Success indicator for the Exponential 3 model; 1 if the optimization was successful, otherwise 0

    exp3_aic

    Akaike Information Criteria (AIC) for the Exponential 3 model

    exp3_cov

    Success indicator for the Exponential 3 model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    exp3_rme

    Root mean square erro for the Exponential 3 model

    exp3_a

    The y-scale parameter for the Exponential 3 model

    exp3_b

    The x-scale parameter for the Exponential 3 model

    exp3_p

    The power parameter for the Exponential 3 model

    exp3_er

    Error term for the Exponential 3 model

    exp3_a_sd

    Standard deviation of the Exponential 3 model y-scale parameter

    exp3_b_sd

    Standard deviation of the Exponential 3 model x-scale parameter

    exp3_p_sd

    Standard deviation of the Exponential 3 model power parameter

    exp3_er_sd

    Standard deviation of the Exponential 3 model error term

    exp3_top

    The maximal response on the resulting Exponential 3 model fit

    exp3_ac50

    Concentration at 50% of the maximal response on the Exponential 3 model fit

    exp4_success

    Success indicator for the Exponential 4 model; 1 if the optimization was successful, otherwise 0

    exp4_aic

    Akaike Information Criteria (AIC) for the Exponential 4 model

    exp4_cov

    Success indicator for the Exponential 4 model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    exp4_rme

    Root mean square erro for the Exponential 4 model

    exp4_tp

    The top parameter indicating the maximal estimated response

    exp4_ga

    The gain parameter for the Exponential 4 model, gain AC50

    exp4_er

    Error term for the Exponential 4 model

    exp4_tp_sd

    Standard deviation of the Exponential 4 model top parameter

    exp4_ga_sd

    Standard deviation of the Exponential 4 model gain parameter

    exp4_er_sd

    Standard deviation of the Exponential 4 model error term

    exp4_top

    The maximal response on the resulting Exponential 4 model fit

    exp4_ac50

    Concentration at 50% of the maximal response on the Exponential 4 model fit

    exp5_success

    Success indicator for the Exponential 5 model; 1 if the optimization was successful, otherwise 0

    exp5_aic

    Akaike Information Criteria (AIC) for the Exponential 5 model

    exp5_cov

    Success indicator for the Exponential 5 model covariance calculation; 1 if the Hessian matrix inversion is successful, otherwise 0

    exp5_rme

    Root mean square erro for the Exponential 5 model

    exp5_tp

    The top parameter indicating the maximal estimated response

    exp5_ga

    The gain parameter for the Exponential 5 model, gain AC50

    exp5_p

    The power parameter for the Exponential 5 model

    exp5_er

    Error term for the Exponential 5 model

    exp5_tp_sd

    Standard deviation of the Exponential 5 model top parameter

    exp5_ga_sd

    Standard deviation of the Exponential 5 model gain parameter

    exp5_p_sd

    Standard deviation of the Exponential 5 model power parameter

    exp5_er_sd

    Standard deviation of the Exponential 5 model error term

    exp5_top

    The maximal response on the resulting Exponential 5 model fit

    exp5_ac50

    Concentration at 50% of the maximal response on the Exponential 5 model fit

    all_onesd

    Standard deviation of the baseline response for all models

    all_bmed

    Median noise estimation of the baseline response for all models

    resp_unit

    Response Units

    conc_unit

    Concentration Units

  6. mc5 A data frame with 5 rows and 54 columns containing level 5 best curve-fit and hitcall data.

    spid

    Sample ID

    chid

    Unique chemical ID number for tcpl

    casn

    Chemical Abstract Service(CAS) number

    chnm

    Chemical name

    dsstox_substance_id

    Chemical-specific DTXSID

    code

    CAS number compressed into numeric string

    aeid

    Assay Component Endpoint ID

    aenm

    Assay endpoint name (i.e., assay_component_endpoint_name)

    m5id

    Level 5 (mc5) ID

    m4id

    Level 4 (mc4) ID

    bmad

    The median absolute deviation of all treatment wells (default option) or blank wells

    resp_max

    Maximum observed response

    resp_min

    Minimum observed response

    max_mean

    Maximum mean response

    max_mean_conc

    Concentration of the maximum mean response

    max_med

    Maximum median response

    max_med_conc

    Concentration of the maximum median response

    logc_max

    Maximum concentration on the log scale

    logc_min

    Minimum concentration on the log scale

    nconc

    The total number of concentration groups

    npts

    Total number of observed responses (i.e. data points in the concentration series)

    nrep

    Number of replicates in concentration groups

    nmed_gtbl

    The number of median responses greater than 3BMAD

    hitc

    Hitcall

    modl

    Best model fit from tcplFit2 curve-fitting

    fitc

    Fit category

    coff

    Cutoff

    top_over_cutoff

    Ratio of the top of the best model fit curve and the cutoff

    rmse

    Root mean squared error

    a

    The y-scale parameter for poly1, poly2, pow, exp2, or exp3 model

    er

    Error term

    bmr

    Benchmark response

    bmdl

    Lower 95% confidence bound on the benchmark dose/concentration estimate

    caikwt

    Akaike Information Criteria weight of constant model relative to the best model fit

    mll

    Maximum log-likelihood of the best model fit

    hitcall

    Continuous hitcall

    ac50

    Concentration where 50% of the maximal response occurs - if 'modl' is the Hill or Gain-loss model this is for the "gain" side of the response

    top

    The maximal response on the best model curve fit - i.e. top of the curve fit

    ac5

    Concentration where 5% of the maximal response occurs

    ac10

    Concentration where 10% of the maximal response occurs

    ac20

    Concentration where 20% of the maximal response occurs

    acc

    Concentration where the efficacy cutoff response occurs

    ac1sd

    Concentration where one standard deviation of the background response occurs

    bmd

    Benchmark response/concentration estimate - concentration where the benchmark response occurs

    bmdu

    Upper 95% confidence bound on the benchmark dose/concentration estimate

    tp

    The top curve parameter for the exp4, exp5, hill, or gnls model

    ga

    The gain parameter for the hill or gnls model - gain AC50

    p

    The power parameter for the pow, exp3, exp5, gnls, or hill model - for gnls this is the gain power parameter

    q

    The loss power parameter for the gnls model

    la

    The loss parameter for the gnls model, loss AC50

    ac50_loss

    Concentration where 50% of the maximal response occurs - if 'modl' is the Hill or Gain-loss model this is for the "loss" side of the response

    b

    The x-scale parameter for poly2, exp2, or exp3 model

    resp_unit

    Response Units

    conc_unit

    Concentration Units


tcpl documentation built on Oct. 10, 2024, 1:07 a.m.