teal
application to analyze and report outliers with various datasets types.This vignette will guide you through the four parts to create a teal
application using
various types of datasets using the outliers module tm_outliers()
:
app
variablelibrary(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets
Inside this app 3 datasets will be used
ADSL
A wide data set with subject dataADRS
A long data set with response data for subjects at different time points of the studyADLB
A long data set with lab measurements for each subjectdata <- teal_data() data <- within(data, { ADSL <- teal.data::rADSL ADRS <- teal.data::rADRS ADLB <- teal.data::rADLB }) join_keys(data) <- default_cdisc_join_keys[names(data)]
app
variableThis is the most important section. We will use the teal::init()
function to
create an app. The data will be handed over using teal.data::teal_data()
. The app
itself will be constructed by multiple calls of tm_outliers()
using different
combinations of data sets.
# configuration for the single wide dataset mod1 <- tm_outliers( label = "Single wide dataset", outlier_var = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")), selected = "AGE", fixed = FALSE ) ), categorical_var = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices( data[["ADSL"]], subset = names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor))) ), selected = "RACE", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the wide and long datasets mod2 <- tm_outliers( label = "Wide and long datasets", outlier_var = list( data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")), selected = "AGE", fixed = FALSE ) ), data_extract_spec( dataname = "ADLB", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADLB"]], c("AVAL", "CHG2")), selected = "AVAL", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices( data[["ADSL"]], subset = names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor))) ), selected = "RACE", multiple = FALSE, fixed = FALSE ) ) ) # configuration for the multiple long datasets mod3 <- tm_outliers( label = "Multiple long datasets", outlier_var = list( data_extract_spec( dataname = "ADRS", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADRS"]], c("ADY", "EOSDY")), selected = "ADY", fixed = FALSE ) ), data_extract_spec( dataname = "ADLB", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADLB"]], c("AVAL", "CHG2")), selected = "AVAL", multiple = FALSE, fixed = FALSE ) ) ), categorical_var = list( data_extract_spec( dataname = "ADRS", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADRS"]], c("ARM", "ACTARM")), selected = "ARM", multiple = FALSE, fixed = FALSE ) ), data_extract_spec( dataname = "ADLB", select = select_spec( label = "Select variables:", choices = variable_choices( data[["ADLB"]], subset = names(Filter(isTRUE, sapply(data[["ADLB"]], is.factor))) ), selected = "RACE", multiple = FALSE, fixed = FALSE ) ) ) ) # initialize the app app <- init( data = data, modules = modules( # tm_outliers ---- modules( label = "Outliers module", mod1, mod2, mod3 ) ) )
A simple shiny::shinyApp()
call will let you run the app.
Note that app is only displayed when running this code inside an R
session.
shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))
code <- paste0(c( knitr::knit_code$get("library"), knitr::knit_code$get("data"), knitr::knit_code$get("app"), knitr::knit_code$get("shinyapp") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) cat(sprintf("[Open in Shinylive](%s)\n\n", url))
knitr::include_url(url, height = "800px")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.