| EM_templateICA | R Documentation |
EM Algorithms for Template ICA Models
EM_templateICA.spatial(
template_mean,
template_var,
meshes,
BOLD,
theta0,
C_diag,
H,
Hinv,
maxiter = 100,
usePar = FALSE,
epsilon = 0.001,
reduce_dim = TRUE,
verbose = FALSE
)
EM_templateICA.independent(
template_mean,
template_var,
BOLD,
theta0,
C_diag,
H,
Hinv,
maxiter = 100,
epsilon = 0.001,
reduce_dim = FALSE,
usePar = FALSE,
verbose
)
template_mean |
( |
template_var |
( |
meshes |
|
BOLD |
( |
theta0 |
(list) initial guess at parameter values: A ( |
C_diag |
( |
H, Hinv |
For dimension reduction
of the spatial template ICA model, which assumes that all IC's have the
same smoothness parameter, |
maxiter |
Maximum number of EM iterations. Default: 100. |
usePar |
Parallelize the computation? Default: |
epsilon |
Smallest proportion change between iterations. Default: 0.001. |
reduce_dim |
Reduce the temporal dimension of the data using PCA?
Default: |
verbose |
If |
EM_templateICA.spatial implements the expectation-maximization
(EM) algorithm described in Mejia et al. (2019+) for estimating the
subject-level ICs and unknown parameters in the template ICA model with
spatial priors on subject effects.
In both models, if original fMRI timeseries has covariance
\sigma^2 I_T, the prewhitened timeseries achieved by premultiplying
by (QxT) matrix H from PCA has diagonal covariance
\sigma^2HH', so C_diag is diag(HH').
A list: theta (list of final parameter estimates), subICmean
(estimates of subject-level ICs), subICvar (variance of subject-level ICs,
for non-spatial model) or subjICcov (covariance matrix of subject-level ICs,
for spatial model – note that only diagonal and values for neighbors are
computed), and success (flag indicating convergence (TRUE) or not
(FALSE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.