R/downsample.R

Defines functions required_pkgs.step_downsample tunable.step_downsample tidy.step_downsample print.step_downsample bake.step_downsample subsamp prep.step_downsample step_downsample_new step_downsample

Documented in required_pkgs.step_downsample step_downsample tidy.step_downsample tunable.step_downsample

#' Down-Sample a Data Set Based on a Factor Variable
#'
#' `step_downsample()` creates a *specification* of a recipe step that will
#' remove rows of a data set to make the occurrence of levels in a specific
#' factor level equal.
#'
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which
#'  variable is used to sample the data. See [selections()]
#'  for more details. The selection should result in _single
#'  factor variable_. For the `tidy` method, these are not
#'  currently used.
#' @param role Not used by this step since no new variables are
#'  created.
#' @param column A character string of the variable name that will
#'  be populated (eventually) by the `...` selectors.
#' @param under_ratio A numeric value for the ratio of the
#'  minority-to-majority frequencies. The default value (1) means
#'  that all other levels are sampled down to have the same
#'  frequency as the least occurring level. A value of 2 would mean
#'  that the majority levels will have (at most) (approximately)
#'  twice as many rows than the minority level.
#' @param ratio Deprecated argument; same as `under_ratio`
#' @param target An integer that will be used to subsample. This
#'  should not be set by the user and will be populated by `prep`.
#' @param seed An integer that will be used as the seed when downsampling.
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` which is
#'  the variable used to sample.
#' @details
#' Down-sampling is intended to be performed on the _training_ set
#'  alone. For this reason, the default is `skip = TRUE`.
#'
#' If there are missing values in the factor variable that is used
#'  to define the sampling, missing data are selected at random in
#'  the same way that the other factor levels are sampled. Missing
#'  values are not used to determine the amount of data in the
#'  minority level
#'
#' For any data with factor levels occurring with the same
#'  frequency as the minority level, all data will be retained.
#'
#' All columns in the data are sampled and returned by [juice()]
#'  and [bake()].
#'
#' Keep in mind that the location of down-sampling in the step
#'  may have effects. For example, if centering and scaling,
#'  it is not clear whether those operations should be conducted
#'  _before_ or _after_ rows are removed.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns `terms`
#' (the selectors or variables selected) will be returned.
#'
#' ```{r, echo = FALSE, results="asis"}
#' step <- "step_downsample"
#' result <- knitr::knit_child("man/rmd/tunable-args.Rmd")
#' cat(result)
#' ```
#'
#' @template case-weights-unsupervised
#'
#' @family Steps for under-sampling
#'
#' @export
#' @examples
#' library(recipes)
#' library(modeldata)
#' data(hpc_data)
#'
#' hpc_data0 <- hpc_data %>%
#'   select(-protocol, -day)
#'
#' orig <- count(hpc_data0, class, name = "orig")
#' orig
#'
#' up_rec <- recipe(class ~ ., data = hpc_data0) %>%
#'   # Bring the majority levels down to about 1000 each
#'   # 1000/259 is approx 3.862
#'   step_downsample(class, under_ratio = 3.862) %>%
#'   prep()
#'
#' training <- up_rec %>%
#'   bake(new_data = NULL) %>%
#'   count(class, name = "training")
#' training
#'
#' # Since `skip` defaults to TRUE, baking the step has no effect
#' baked <- up_rec %>%
#'   bake(new_data = hpc_data0) %>%
#'   count(class, name = "baked")
#' baked
#'
#' # Note that if the original data contained more rows than the
#' # target n (= ratio * majority_n), the data are left alone:
#' orig %>%
#'   left_join(training, by = "class") %>%
#'   left_join(baked, by = "class")
#'
#' library(ggplot2)
#'
#' ggplot(circle_example, aes(x, y, color = class)) +
#'   geom_point() +
#'   labs(title = "Without downsample")
#'
#' recipe(class ~ x + y, data = circle_example) %>%
#'   step_downsample(class) %>%
#'   prep() %>%
#'   bake(new_data = NULL) %>%
#'   ggplot(aes(x, y, color = class)) +
#'   geom_point() +
#'   labs(title = "With downsample")
step_downsample <-
  function(recipe, ..., under_ratio = 1, ratio = deprecated(), role = NA,
           trained = FALSE, column = NULL, target = NA, skip = TRUE,
           seed = sample.int(10^5, 1), id = rand_id("downsample")) {

    if (lifecycle::is_present(ratio)) {
      lifecycle::deprecate_stop(
        "0.2.0",
        "step_downsample(ratio = )",
        "step_downsample(under_ratio = )"
      )
    }

    add_step(
      recipe,
      step_downsample_new(
        terms = enquos(...),
        under_ratio = under_ratio,
        ratio = NULL,
        role = role,
        trained = trained,
        column = column,
        target = target,
        skip = skip,
        seed = seed,
        id = id,
        case_weights = NULL
      )
    )
  }

step_downsample_new <-
  function(terms, under_ratio, ratio, role, trained, column, target, skip, seed,
           id, case_weights) {
    step(
      subclass = "downsample",
      terms = terms,
      under_ratio = under_ratio,
      ratio = ratio,
      role = role,
      trained = trained,
      column = column,
      target = target,
      skip = skip,
      id = id,
      seed = seed,
      id = id,
      case_weights = case_weights
    )
  }

#' @export
prep.step_downsample <- function(x, training, info = NULL, ...) {
  col_name <- recipes_eval_select(x$terms, training, info)

  wts <- recipes::get_case_weights(info, training)
  were_weights_used <- recipes::are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used) || is.null(wts)) {
    wts <- rep(1, nrow(training))
  }

  if (length(col_name) > 1) {
    rlang::abort("The selector should select at most a single variable")
  }

  if (length(col_name) == 0) {
    minority <- 1
  } else {
    check_column_factor(training, col_name)
    obs_freq <- weighted_table(training[[col_name]], as.integer(wts))
    minority <- min(obs_freq)
  }

  check_na(select(training, all_of(col_name)))

  step_downsample_new(
    terms = x$terms,
    under_ratio = x$under_ratio,
    ratio = x$ratio,
    role = x$role,
    trained = TRUE,
    column = col_name,
    target = floor(minority * x$under_ratio),
    skip = x$skip,
    seed = x$seed,
    id = x$id,
    case_weights = were_weights_used
  )
}


subsamp <- function(x, wts, num) {
  n <- nrow(x)
  if (nrow(x) == num) {
    out <- x
  } else {
    # downsampling is done without replacement
    out <- x[sample(seq_len(n), min(num, n), prob = wts), ]
  }
  out
}

#' @export
bake.step_downsample <- function(object, new_data, ...) {
  col_names <- names(object$column)
  check_new_data(col_names, object, new_data)

  if (length(col_names) == 0L) {
    # Empty selection
    return(new_data)
  }

  if (isTRUE(object$case_weights)) {
    wts_col <- purrr::map_lgl(new_data, hardhat::is_case_weights)
    wts <- new_data[[names(which(wts_col))]]
    wts <- as.integer(wts)
  } else {
    wts <- rep(1, nrow(new_data))
  }

  if (any(is.na(new_data[[col_names]]))) {
    missing <- new_data[is.na(new_data[[col_names]]), ]
  } else {
    missing <- NULL
  }
  split_data <- split(new_data, new_data[[col_names]])
  split_wts <- split(wts, new_data[[col_names]])


  # Downsample with seed for reproducibility
  with_seed(
    seed = object$seed,
    code = {
      new_data <- purrr::map2_dfr(
        split_data,
        split_wts,
        subsamp,
        num = object$target
      )
      if (!is.null(missing)) {
        new_data <- bind_rows(new_data, subsamp(missing, object$target))
      }
    }
  )

  new_data
}

#' @export
print.step_downsample <-
  function(x, width = max(20, options()$width - 26), ...) {
    title <- "Down-sampling based on "
    print_step(x$column, x$terms, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @param x A `step_downsample` object.
#' @export
tidy.step_downsample <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(terms = unname(x$column))
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = unname(term_names))
  }
  res$id <- x$id
  res
}

#' @export
#' @rdname tunable_themis
tunable.step_downsample <- function(x, ...) {
  tibble::tibble(
    name = "under_ratio",
    call_info = list(
      list(pkg = "dials", fun = "under_ratio")
    ),
    source = "recipe",
    component = "step_downsample",
    component_id = x$id
  )
}

#' @rdname required_pkgs.step
#' @export
required_pkgs.step_downsample <- function(x, ...) {
  c("themis")
}

Try the themis package in your browser

Any scripts or data that you put into this service are public.

themis documentation built on Aug. 15, 2023, 1:05 a.m.