Nothing
#' Down-Sample a Data Set Based on a Factor Variable
#'
#' `step_downsample()` creates a *specification* of a recipe step that will
#' remove rows of a data set to make the occurrence of levels in a specific
#' factor level equal.
#'
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which
#' variable is used to sample the data. See [selections()]
#' for more details. The selection should result in _single
#' factor variable_. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param column A character string of the variable name that will
#' be populated (eventually) by the `...` selectors.
#' @param under_ratio A numeric value for the ratio of the
#' minority-to-majority frequencies. The default value (1) means
#' that all other levels are sampled down to have the same
#' frequency as the least occurring level. A value of 2 would mean
#' that the majority levels will have (at most) (approximately)
#' twice as many rows than the minority level.
#' @param ratio Deprecated argument; same as `under_ratio`
#' @param target An integer that will be used to subsample. This
#' should not be set by the user and will be populated by `prep`.
#' @param seed An integer that will be used as the seed when downsampling.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which is
#' the variable used to sample.
#' @details
#' Down-sampling is intended to be performed on the _training_ set
#' alone. For this reason, the default is `skip = TRUE`.
#'
#' If there are missing values in the factor variable that is used
#' to define the sampling, missing data are selected at random in
#' the same way that the other factor levels are sampled. Missing
#' values are not used to determine the amount of data in the
#' minority level
#'
#' For any data with factor levels occurring with the same
#' frequency as the minority level, all data will be retained.
#'
#' All columns in the data are sampled and returned by [juice()]
#' and [bake()].
#'
#' Keep in mind that the location of down-sampling in the step
#' may have effects. For example, if centering and scaling,
#' it is not clear whether those operations should be conducted
#' _before_ or _after_ rows are removed.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns `terms`
#' (the selectors or variables selected) will be returned.
#'
#' ```{r, echo = FALSE, results="asis"}
#' step <- "step_downsample"
#' result <- knitr::knit_child("man/rmd/tunable-args.Rmd")
#' cat(result)
#' ```
#'
#' @template case-weights-unsupervised
#'
#' @family Steps for under-sampling
#'
#' @export
#' @examples
#' library(recipes)
#' library(modeldata)
#' data(hpc_data)
#'
#' hpc_data0 <- hpc_data %>%
#' select(-protocol, -day)
#'
#' orig <- count(hpc_data0, class, name = "orig")
#' orig
#'
#' up_rec <- recipe(class ~ ., data = hpc_data0) %>%
#' # Bring the majority levels down to about 1000 each
#' # 1000/259 is approx 3.862
#' step_downsample(class, under_ratio = 3.862) %>%
#' prep()
#'
#' training <- up_rec %>%
#' bake(new_data = NULL) %>%
#' count(class, name = "training")
#' training
#'
#' # Since `skip` defaults to TRUE, baking the step has no effect
#' baked <- up_rec %>%
#' bake(new_data = hpc_data0) %>%
#' count(class, name = "baked")
#' baked
#'
#' # Note that if the original data contained more rows than the
#' # target n (= ratio * majority_n), the data are left alone:
#' orig %>%
#' left_join(training, by = "class") %>%
#' left_join(baked, by = "class")
#'
#' library(ggplot2)
#'
#' ggplot(circle_example, aes(x, y, color = class)) +
#' geom_point() +
#' labs(title = "Without downsample")
#'
#' recipe(class ~ x + y, data = circle_example) %>%
#' step_downsample(class) %>%
#' prep() %>%
#' bake(new_data = NULL) %>%
#' ggplot(aes(x, y, color = class)) +
#' geom_point() +
#' labs(title = "With downsample")
step_downsample <-
function(recipe, ..., under_ratio = 1, ratio = deprecated(), role = NA,
trained = FALSE, column = NULL, target = NA, skip = TRUE,
seed = sample.int(10^5, 1), id = rand_id("downsample")) {
if (lifecycle::is_present(ratio)) {
lifecycle::deprecate_stop(
"0.2.0",
"step_downsample(ratio = )",
"step_downsample(under_ratio = )"
)
}
add_step(
recipe,
step_downsample_new(
terms = enquos(...),
under_ratio = under_ratio,
ratio = NULL,
role = role,
trained = trained,
column = column,
target = target,
skip = skip,
seed = seed,
id = id,
case_weights = NULL
)
)
}
step_downsample_new <-
function(terms, under_ratio, ratio, role, trained, column, target, skip, seed,
id, case_weights) {
step(
subclass = "downsample",
terms = terms,
under_ratio = under_ratio,
ratio = ratio,
role = role,
trained = trained,
column = column,
target = target,
skip = skip,
id = id,
seed = seed,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_downsample <- function(x, training, info = NULL, ...) {
col_name <- recipes_eval_select(x$terms, training, info)
wts <- recipes::get_case_weights(info, training)
were_weights_used <- recipes::are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used) || is.null(wts)) {
wts <- rep(1, nrow(training))
}
if (length(col_name) > 1) {
rlang::abort("The selector should select at most a single variable")
}
if (length(col_name) == 0) {
minority <- 1
} else {
check_column_factor(training, col_name)
obs_freq <- weighted_table(training[[col_name]], as.integer(wts))
minority <- min(obs_freq)
}
check_na(select(training, all_of(col_name)))
step_downsample_new(
terms = x$terms,
under_ratio = x$under_ratio,
ratio = x$ratio,
role = x$role,
trained = TRUE,
column = col_name,
target = floor(minority * x$under_ratio),
skip = x$skip,
seed = x$seed,
id = x$id,
case_weights = were_weights_used
)
}
subsamp <- function(x, wts, num) {
n <- nrow(x)
if (nrow(x) == num) {
out <- x
} else {
# downsampling is done without replacement
out <- x[sample(seq_len(n), min(num, n), prob = wts), ]
}
out
}
#' @export
bake.step_downsample <- function(object, new_data, ...) {
col_names <- names(object$column)
check_new_data(col_names, object, new_data)
if (length(col_names) == 0L) {
# Empty selection
return(new_data)
}
if (isTRUE(object$case_weights)) {
wts_col <- purrr::map_lgl(new_data, hardhat::is_case_weights)
wts <- new_data[[names(which(wts_col))]]
wts <- as.integer(wts)
} else {
wts <- rep(1, nrow(new_data))
}
if (any(is.na(new_data[[col_names]]))) {
missing <- new_data[is.na(new_data[[col_names]]), ]
} else {
missing <- NULL
}
split_data <- split(new_data, new_data[[col_names]])
split_wts <- split(wts, new_data[[col_names]])
# Downsample with seed for reproducibility
with_seed(
seed = object$seed,
code = {
new_data <- purrr::map2_dfr(
split_data,
split_wts,
subsamp,
num = object$target
)
if (!is.null(missing)) {
new_data <- bind_rows(new_data, subsamp(missing, object$target))
}
}
)
new_data
}
#' @export
print.step_downsample <-
function(x, width = max(20, options()$width - 26), ...) {
title <- "Down-sampling based on "
print_step(x$column, x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @rdname tidy.recipe
#' @param x A `step_downsample` object.
#' @export
tidy.step_downsample <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$column))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = unname(term_names))
}
res$id <- x$id
res
}
#' @export
#' @rdname tunable_themis
tunable.step_downsample <- function(x, ...) {
tibble::tibble(
name = "under_ratio",
call_info = list(
list(pkg = "dials", fun = "under_ratio")
),
source = "recipe",
component = "step_downsample",
component_id = x$id
)
}
#' @rdname required_pkgs.step
#' @export
required_pkgs.step_downsample <- function(x, ...) {
c("themis")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.