details_k_means_clustMixType | R Documentation |
k_means()
creates K-prototypes model. A K-prototypes is the middle ground
between a K-means and K-modes model, in the sense that it can be used with
data that contains both numeric and categorical predictors.
Both numeric and categorical predictors are requires for this engine.
For this engine, there is a single mode: partition
This model has 1 tuning parameters:
num_clusters
: # Clusters (type: integer, default: no default)
k_means(num_clusters = integer(1)) %>% set_engine("clustMixType") %>% set_mode("partition") %>% translate_tidyclust()
## K Means Cluster Specification (partition) ## ## Main Arguments: ## num_clusters = integer(1) ## ## Computational engine: clustMixType ## ## Model fit template: ## tidyclust::.k_means_fit_clustMixType(x = missing_arg(), k = missing_arg(), ## keep.data = missing_arg(), k = integer(1), keep.data = TRUE, ## verbose = FALSE)
Both categorical and numeric predictors are required.
Szepannek, G. (2018): clustMixType: User-Friendly Clustering of Mixed-Type Data in R, The R Journal 10/2, 200-208, doi:10.32614/RJ-2018-048.
Aschenbruck, R., Szepannek, G., Wilhelm, A. (2022): Imputation Strategies for Clustering Mixed‑Type Data with Missing Values, Journal of Classification, doi:10.1007/s00357-022-09422-y.
Z.Huang (1998): Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Variables, Data Mining and Knowledge Discovery 2, 283-304.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.